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 Rapid development along the Kuantan River was long perceived as the rivers serve many communities in 
terms of drinking water source, domestic, fisheries, recreation, and agricultural purposes. Due to the rapid 
changes in technology and upsurge in chemical usage, pollutant alterations turn out to be more drastic with 
respect to space and time. Research on the trace metals in river water is quite limited in Malaysia, probably 
due to their ppb-level existence and the need for special handling techniques. Hence, the aim of this study is 
to forecast heavy metals concentration in Kuantan River waters using a collective of 10 years (2007 – 2016) 
dataset of heavy metals that provided by the Department of Environment, Malaysia. Principal Component 
Analysis (PCA) was used to compute the data, which showed that As, Cr, Fe, Zn and Cd explain 67.3% of the 
total variance through three principal components. For ANN computation, those significant metals extracted 
from rotating PCA was selected and used in ANN model. The developed approaches were trained and tested 
using 80% and 20% of the data, respectively. Then, the coefficient of determination (R2) was executed to 
calculate the model performance. Out of five metals, only As shown acceptable R2 for ANN models with 0.8690 
and 0.8088 for training and testing, respectively, probably due to the model’s limitation. Generally, this study 
illustrates the usefulness of PCA and ANN for analysis and interpretation of complex data sets and 
understanding the temporal and spatial variations in the Kuantan River for effective river water management.  
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1.   INTRODUCTION 

Urbanization, industrialization, logging, and mining were undertaken in 
order to meet the requirements of a growing population. Heavy metals 
levels in river waters and sediments have risen as a result of these 
measures (Suthar et al., 2009). Metals are mobile in the water column and 
travel through channels from upstream to downstream and vice versa, 
eventually sinking in riverbeds. Metals will accumulate in plants and fauna 
across the food chain, and natural deterioration will occur (Rossi et al., 
2013). The metals were bound with silicates and minerals in an 
undisturbed biosphere, making them nearly immovable (Medici et al., 
2011). 

Principal Component Analysis (PCA) and Artificial Neural Network (ANN) 
are used to characterize and evaluate the surface water condition and 
manage to verify temporal and spatial variations caused by natural and 
anthropogenic factors (Singh et al., 2005; Yidana et al., 2008; Juahir et al., 
2011; Low et al., 2016). PCA have been utilized by various researchers to 
explore the pollution sources of river water, for example, a group 
researcher have applied PCA in their studies on the Nakdong River 
watershed to identify pollution sources and discovered that 

anthropogenic pollutants are responsible for the high variation in the 
water quality of the river water (Han et al., 2009). Similarly, some 
researchers applied PCA in the surface water quality data of Ceyhan River 
(Tanriverdi et al., 2010). Three PCs were significantly identified 
corresponding to areas close to cities, which presented low dissolved 
oxygen contents and high concentrations of physicochemical parameters, 
suggesting anthropogenic inputs. The stations in the vicinity of industries 
have higher pollution due to the discharge of wastewater from industries 
and domestic activities. 

For the past decades, ANNs have been widely applied in various research 
areas including upgrading the water quality management (Nasri 2010; 
Chitra et al., 2012, Mutalib et al., 2013; Azid et al., 2014; Kuo et al., 2006; 
Keskin et al., 2014). This ultimately allows ANNs to model environmental 
systems without prior specification of the algebraic relationships between 
variables. Now, ANN has also become an indispensable tool for 
environmental management in Malaysia, as many researchers have 
engaged ANN to many water resources applications such as forecasting 
and modeling (Toriman et al., 2010; Toriman et al., 2011; Khan et al., 2012; 
Uca et al., 2018). 
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Several comprehensive studies using these techniques were reported 
which includes research on air pollution, such as air quality pattern 
recognition in Selangor, Malacca and Sarawak and air pollution and 
modelling around Malaysia (Mutalib et al., 2013; Azid et al., 2014; Ahmad 
Isiyaka and Azid, 2015; Azid et al., 2017). Besides, studies also used PCA 
and ANN to forecasting dissolved oxygen, modelling river discharges, 
prediction of water quality index and spatial water quality assessment of 
Langat River Basin, water quality variation on rivers and lakes in Malaysia, 
water quality in Terengganu estuaries, source apportionment in Perlis 
River Basin and many more (Juahir et al., 2003a; 2004a; 2004b; 2011; Low 
et al., 2016; Khalit et al., 2017; Samsudin et al. 2017b). Chau has reviewed 
the development and current progress of the integration of artificial 
intelligence into water quality modeling, while has identified the 
appropriate measures to improve the river water quality in Juru River 
(Chau, 2006; Toriman et al., 2011). These characteristics render ANNs to 
be very suitable tools for handling various hydrological modelling 
problems.  

Water quality involves several aspects, including significant non-linear 
relationships with the variables, making traditional data analysis less 
reliable in understanding the situation (Goethals et al., 2007). Artificial 
neural networks (ANNs), on the other hand, are capable of simulating 
basic human brain features such as self-organization, error tolerance, and 
self-compliance, and have been widely used for model recognition, 
analysis, and prediction, as well as system identification in order to 
improve design (Maier and Dandy, 1998). Furthermore, ANN modelling is 
likely to shorten the computation time and lower the likelihood of errors 
in the produced model.  

According to the DOE’s 2015 Environmental Quality Report, river water 
quality was monitored across 158 river basins constantly (DOE, 2015). 
The continuous assessment carried out by DOE resulted in the mass of 
environmental data sets. However, the data sets were not fully utilized 
since lack of advanced statistical techniques to extract all sorts of 
information. Ten years historical data matrix acquired from DOE 
continuous assessment, from year 2007 to 2016 were presented in this 
paper. The data sets were performed to the receptor models’ techniques 
involves principal component analysis (PCA) and varimax rotation and 
numerical models from ANN. This study attempts to predict heavy metals 
concentration in Kuantan River water. 

2.   MATERIALS AND METHODS 

2.1   Study Site 

Kuantan River is situated contiguous to the Tanjung Lumpur mangrove in 
Kuantan district, Pahang. The watershed covers an expanse of 1,586 km2 
and is about 80 km long and varied depth between 2 m to 10 m (DOE 
2010). Kuantan River flows through two mukims i.e., Ulu Kuantan and 
Kuala Kuantan and flowing out to the South China Sea. 

2.2   Pre-Treatment Data 

Six physicochemical parameters and seven heavy metals were detected at 
monitoring stations along the Kuantan River. The monitoring locations 
were selected based on the ten-year data sets published from 2007 to 
2016, but some stations are missing in the raw data, and some data is 
insufficient, possibly due to technical failure of measuring equipment and 
lab work. For source apportionment and model construction, a total of 
3900 annotations were introduced.  The parameters consist of salinity, pH, 
turbidity, temperature, dissolved oxygen (DO), conductivity, as well as 
heavy metals, specifically As, Cd, Cr, Pb, Hg, Zn and Fe.  

Firstly, data were organized following the station and year of survey. 
Variables with values below the detection limit were replaced with one 
half of the detection limit value to ensure that no missing data was present. 
The normalcy test was computed using XLSTAT software based on the 
Anderson - Darling test. Data which is not regularly distributed was 
subjected to the log-scaling procedure, which included a mix of centering 
and normalisation (Felipe-Sotelo et al., 2007). Then, using XLSTAT 
software and JMP10, statistical calculations for PCA and ANN were 
performed, respectively. 

2.3   Principal Component Analysis 

A thorough pretreatment data set was carried out to deliver a clearer 
information about the intricate data, due to the fact that the PCA is 
profound to outliers, loss of information and a poor linear correlation 
between the variables of the inadequately presented variables (Sarbu and 
Pop, 2015). PCA is developed to reduce a set of variables of interest into a 
lower number of components while maintaining the majority of the 
relevant data (Shaharudin et al., 2013; Panigrahi et al., 2007; Khalit et al., 

2018; Sulaiman et al., 2018). This is accomplished by transforming a set of 
possibly correlated observations into a set of linearly uncorrelated 
variables known as principle components. (Shaharudin et al., 2018). This 
analysis will clarify these variations in the conditions of their mutual 
underlying dimension by defining empirical approximations of the 
structure of the variables (Hair et al., 1995; Mutalib et al., 2013; Low et al., 
2016). The first principal component explains as much variation in the 
primary data as possible. Then, subject to being uncorrelated with the 
prior component, each subsequent component explains for as much of the 
remaining variation as possible. PCA can be computed using Eq. (1). 

fij + fj1zi1 + fj2zi2 + …… fjmzm + eij                                    (1) 

where j is the measured variable, f is the factor loading, z is the factor score, 
e is the residual term accounting for errors, i is the number of samples, and 
m is the total number of factors.  

In this study, Varimax rotation was used to increase the value of PCA by 
rotating the eigenvalues (Helena et al., 2000). The main goal of applying 
the varimax rotational is to achieve a much more concise and eloquent 
exemplification of the main genes, resulting in a new group of variables 
known as varimax factors (VFs) (Chou et al., 2009; Samsudin et al., 2017a). 
Varimax rotation was used to reduce the dimensionality of the data and 
identify highly significant new variables when the PCs created by PCA 
were not ready for interpretation (Ismail et al., 2016; Samsudin et al., 
2017b; Samsudin et al., 2017c). Factor loading is considered highly 
significant when the Varimax factor (VF) coefficient has a correlation of 
greater than 0.75. (Liu et al., 2003). While moderate and weak factor 
loading are defined as correlations between 0.75-0.50 and 0.5, 
respectively (Nair et al., 2010). 

2.4   Artificial Neural Networks 

ANNs can use a portion of the data set's input and output training patterns 
to characterise nonlinear and complex relationships. These methods 
create a nonlinear relationship between inputs and outputs (Hornik et al., 
1990; Samsudin et al., 2017c; Azid et al., 2017; Rani et al., 2018). An ANN 
can be built using an architecture that expresses the node-to-node 
association form, connecting weights method identification, and activation 
function (Kisi, 2008). Since ANN can infer a system's dynamics from data, 
it can address large-scale, complicated issues (ASCE, 2000; Azaman et al., 
2015). The most often used ANN model is the multilayer perceptron 
network (MLPN) model, which is based on one of the neural network 
topologies. A three-layered MLPN is made up of neurons in each layer as 
well as components that connect them (Haykin, 1999; Rani et al., 2018). 
The optimization process for weights is used to find the right weights to 
minimise inaccuracies throughout network training; this operation 
continues until the values of the output layer are close enough to the real 
outputs (Hornik et al., 1990). The weights were tuned using a training 
algorithm in this investigation (Kisi, 2008). Figure 1 depicts a feed-
forward network with one hidden layer and multiple nodes between the 
input and output layers in this investigation.  

 

Figure 1: The neural network model for estimating heavy metals 
concentrations of Kuantan River 

ANN have been effectively practiced in different research areas of 
environmental problems. The DOE data was split into two sections: 
training and testing (80 percent and 20 percent, respectively). Since there 
are no criteria in ANN modeling regarding the number of hidden nodes, 
choosing the optimal number of hidden nodes is an unmanageable job. 
Here, a three-layer MLPN with one hidden layer, were compute using the 
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trial-and-error procedure to select the number of hidden nodes (Kisi, 
2009; Azid et al., 2017). For the hidden and output node activation 
functions, sigmoid and linear functions were selected, respectively. For all 
the heavy metal concentrations, the ANN models were first developed 
using the data in the training sets to get the optimized set of learning 
coefficients and then examined. RMSE and determination coefficients (R2) 
were used as evaluation criteria. For the ANN simulations, program codes 
were written in JMP10 software.  

The subsequent statistical indicators were designated in the performance 
assessment ANN models:  

Root-mean-square error (RMSE) Eq. (2) 

RMSE = √
∑ (𝑃𝑖−𝑂𝑖)2𝑛

𝑖=1

𝑛
                                                          (2) 

Coefficient of determination (R2) Eq. (3) 

𝑅² =
[∑ (𝑂𝑖−𝑂̅𝑖)

𝑛

𝑖=1
⋅(𝑃𝑖−𝑃̅𝑖)]

2

∑ (𝑂𝑖−𝑂̅𝑖)
𝑛

𝑖=1
⋅∑ (𝑃𝑖−𝑃̅𝑖)

𝑛

𝑖=1

                                       (3) 

Where n is the total number of data, and Pi and Oi are the heavy metal 
concentrations predicted by the ANN methods and measured values, 
respectively. 

3.   RESULTS AND DISCUSSION 

Descriptive statistics of trace metals in water samples collected from the 
Kuantan River indicated in Table 1. The average levels of As, Hg, Cd, Cr, Pb, 
Zn and Fe were 0.0016 ± 0.0034 mg L-1, 0.0001 ± 0.0005 mg L-1, 0.0005 ± 
0.0003 mg L-1, 0.0008 ± 0.0010 mg L-1, 0.0050 ± 0.0000 mg L-1, 0.0321 ± 
0.0421 mg L-1 and 0.7328 ± 1.0941 mg L-1, respectively. The results of 
statistical analysis showed that the mean concentrations of As, Hg, Cd, Cr, 
Pb, Zn and Fe were lower than the permissible limit of based on INWQS 
that is, 0.05 mg L-1, 0.001 mg L-1, 0.01 mg L-1, 0.05 mg L-1, 0.05 mg L-1, 5.00 
mg L-1 and 1.00 mg L-1, respectively (DOE, 2010). 

Generally, the water quality data set reveals three varifactors, which 
defined the 67.3% loadings of the total variance gained over the rotated 
PCA. Table 2 shows the eigenvalues and factor loadings. Varifactor 1 (VF1) 
had significant positive loadings on As and Cr, accounting for 26.6 percent 
of the total variance. VF2 accounts for 23.6 percent of total variation and 
has significant positive loadings on Zn and Fe, whilst VF3 accounts for 17.1 
percent of total variance and has high positive loadings on Cd. These five 
metals can be clustered together for their common source and controlling 
factors. Kuantan River and the adjoining regions attribute to small and 
medium-scale industrial areas that employed these components for 
countless commercial product and discarded their untreated wastes into 
the river. Through their activities, the densely populated urban area along 
the Kuantan River may also contribute significant amounts of metals into 
the waters, such as agricultural, boating and recreational activities, 
effluents from the nearby hospital, domestic sewages and drainage run-
off. 

Table 1: Descriptive statistic of heavy metals in Kuantan River (mg L-1) 

Variable Minimum Maximum Mean Std. deviation 

As 0.0005 0.0373 0.0016 0.0034 

Hg 0.0001 0.0081 0.0001 0.0005 

Cd 0.0005 0.0040 0.0005 0.0003 

Cr 0.0005 0.0082 0.0008 0.0010 

Pb 0.0050 0.0050 0.0050 0.0000 

Zn 0.0050 0.3263 0.0321 0.0421 

Fe 0.0050 9.4500 0.7328 1.0941 

The relevant factor loadings obtained from the PCA were investigated, and 
various input combinations were examined and chosen in order to create 
the ANN models. The data was then split into training and testing stages in 
the second step. The best network architecture was chosen through trial 
and error, and the heavy metals concentration was calculated using the 
best ANN model. Fundamentally, to define the best model, the highest 
value of R2 and RMSE must be achieved. Training data proportion is a very 
important element for the efficiency of an ANN model; Insufficient neural 
network training could be caused by a low ratio of training data; hence, 
providing an appropriate amount of data can optimize the model's 
accuracy during the training and testing periods. 

Table 2: Eigenvalues from principal component analysis shows 
variability, cumulative and factor loadings. 

 F1 F2 F3 

Eigenvalue 1.598 1.416 1.024 

Variability (%) 26.626 23.608 17.059 

Cumulative % 26.626 50.234 67.293 

As mg L-1 0.869 0.075 0.131 

Hg mg L-1 0.180 0.308 -0.361 

Cd mg L-1 -0.058 0.018 0.908 

Cr mg L-1 0.889 -0.001 0.029 

Pb mg L-1 0.000 0.000 0.000 

Zn mg L-1 -0.122 0.797 0.205 

Fe mg L-1 -0.027 0.825 -0.096 

The ANN model that was built up to predict as concentration are 
formulated in Eq. 4. This formula yields an exact representation, indicated 
by the statistical values such as determination coefficient and root mean 
square error statics, over the entire range of operation conditions. 

Ɵ1 = -0.0003*[ tanh(.5*(-45.6830*DO_mg_l + 0.5705*pH_Unit + -
0.2189*TEMP_Degree_C + -0.0001*COND_uS + -0.1447*SAL_ppt + 
0.0304*TUR_NTU + 282.3177)) ] + 0.0489*[ tanh(.5*(1.1993*DO_mg_l + -
18.3027*pH_Unit + -2.4354*TEMP_Degree_C + 0.0004*COND_uS + -
0.7817*SAL_ppt + 0.0594*TUR_NTU + 181.0156)) ] + -0.0490*[ 
tanh(.5*(1.3158*DO_mg_l + -18.4603*pH_Unit + -2.4432*TEMP_Degree_C 
+ -0.0002*COND_uS + 0.0600*SAL_ppt + 0.0620*TUR_NTU + 181.4276)); 
] + 0.0017                                                                                                                     (4)  

where, Ɵ1 = Predicted As_mg_1              

To simplify an expression, all the variables in the model (4) are denotes as 
follow:  

𝑥 = DOmgl
;  𝑦 = pHUnit;  𝑘 = TEMPDegreeC

;  𝑤 = CONDuS;  𝑡 = SALppt;  𝑔 = TURNTU 

Ɵ1 = -0.0003*[ tanh(.5*(-45.6830*𝑥 + 0.5705*𝑦 + -0.2189*𝑘 + -0.0001*𝑤 
+ -0.1447*𝑡 + 0.0304*𝑔 + 282.3177)) ] + 0.0489*[ tanh(.5*(1.1993*𝑥 + -
18.3027*𝑦 + -2.4354*𝑘 + 0.0004*𝑤 + -0.7817*𝑡 + 0.0594*𝑔 + 181.0156)) 
] + -0.0490*[ tanh(.5*(1.3158*𝑥 + -18.4603*𝑦 + -2.4432*𝑘 +-0.0002*𝑤 + 
0.0600*𝑡 + 0.0620*𝑔 + 181.4276)); ] + 0.0017                                         (5)     

And to make it clear, equation (5) is illustrated as follows:    

Ɵ1 = -0.0003*[ tanh(−22.8415𝑥 + 0.2853𝑦 − 0.1095𝑧 − 0.0005𝑤 −
0.0724𝑡 + 0.0152𝑓+141.1589) ] + 0.0489*[ tanh(0.5997𝑥 − 9.1514𝑦 −
1.2177𝑧 + 0.0004𝑤 − 0.3909𝑡 + 0.0297𝑓 + 90.5078)] -0.0490*[ 
tanh(0.6579𝑥 − 9.2302𝑦 − 1.2216𝑧 − 0.0001𝑤 + 0.0300𝑡 + 0.0310𝑓 +
90.7138) ] + 0.0017                       (6)  

The performance of this model in terms of R2 and RMSE during the training 
and testing period is presented in Table 3. The R2 values attained while 
training and testing the as model were 0.8469 and 0.8084 respectively, 
which indicate the acceptable forecasting performance. Nonetheless, the 
R2 computed when training and testing the Cd, Cr, Zn and Fe model were 
weak and demonstrated greater ranges between the training and testing 
periods, which was unacceptable. 

Table 3: Comparative performance of ANNs for As, Cd, Cr, Zn and Fe 

Metal 
Training Testing 

RMSE R2 RMSE R2 

As 0.0014 0.8469 0.0029 0.8084 

Cd 0.0002 0.9393 0.0011 -0.7618 

Cr 0.0008 0.7629 0.0013 0.1885 

Zn 0.0390 0.2646 0.0450 0.1012 

Fe 1.0490 0.1150 0.9304 0.1588 

The extent of the match between the actual and predicted concentration 
of ANN models is shown in Figure 2. The graphs presented comparable 
trends between actual and predicted As except for some points, predicted 
as distributed far from the actual As.  Figure 3 further emphasizes the 
better performance of the as model through the scatter plots of observed 
As versus simulated As concentrations. The left side represents the model 
training period, and the right side represents the reliable results for the 
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testing period. The scatterplots illustrate that the simulated data show an 
agreement with the observed data of as concentration. The results of this 
study have shown that ANN was effective for predicting the as 

concentration of Kuantan River. It is clear that the model's performance 
was consistent, and the Kuantan River model accurately predicted metal 
concentrations. 

 

Figure 2: Comparison of the actual as concentration values and As predicted values in testing phase 

 

Figure 3: Observed and simulated as concentrations by ANN model during training (left) and testing (right) phases 

4.   CONCLUSION 

ANNs are capable of predicting heavy metals concentrations using 
historical information. Rather than straightforwardly using the mass data 
set, the PCA employment in this model is observed as wise resolution, 
since PCA lowered the number of inputs and narrowed down the model 
complexity. Significant factors generated by PCA/FA were As, Cd, Cr, Zn 
and Fe were used for model training and testing. The performance of these 
five metals was evaluated and it was found that only as shown good RMSE 
and R2 were very consistent. The performance of PCA and ANN has 
successfully developed a prediction model for arsenic concentration. Thus, 
verified that the PCA-ANN approach can be implemented by DOE or 
another public agency to monitor and manage the environment efficiently. 
Sampling, labors, and cost of chemical used in the analyses definitely can 
be minimized by using these developed models. 
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