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ARTICLE DETAILS ABSTRACT

Article History: Remote sensing is commonly utilized for surface cover classification and change analysis. An important
approach in studying water resources and assessing hydrological drought involves utilizing remote sensing
to extract various land cover features. Given the potential influence of environmental noise, the objective of
this study is to devise an index that enhances water extraction accuracy while establishing a stable threshold
value. The investigation focuses on the Water Ratio Index (WRI) and the Automated Water Extraction Index
(AWEI) in the context of Bath, United Kingdom, particularly addressing areas with shadows and dark surfaces
that often lead to misclassifications by other indices. The application and comparative performance
assessment of these indices are conducted using GIS and Remote Sensing technology. WRI analysis reveals
index values ranging from 0.83 to 1.24, highlighting regions with water or moisture content (WRI greater than
1) and extensive areas devoid of water (WRI less than 1). Notably, AWEI nsh yields more accurate predictions
than AWEI sh, which tends to identify shade and man-made surfaces rather than water surfaces. AWEI nsh
exhibits a significantly higher water land cover figure (11342.5) compared to AWEI sh's minimal value
(359.5). In scenarios where water information is susceptible to noise, AWEI proves to be a more suitable and
effective alternative water index. It is recommended for use in locations with challenging water data, offering
improved accuracy and reliability.
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scientists with concrete information to identify, explain, and mitigate
these transformations.

1. INTRODUCTION

Scientists from various disciplines are currently investigating the impacts
of environmental changes on both natural ecosystems and human
societies. Alterations in land use/cover (LULC), climate, and other
environmental factors have had widespread consequences across the
globe, with surface water being a fundamental Earth resource undergoing
dynamic transformations over time and space. Extensive research has
been dedicated to comprehending the ecological, health, social, and
economic repercussions resulting from shifts in surface water (Bond et al.,
2008; Alderman etal,, 2012; Li et al, 2012; Sun et al,, 2012). Disasters like
floods, the proliferation of waterborne diseases, and shortages of water in
arid tropical regions often trace back to alterations in surface water levels.
Consequently, it is of utmost importance to actively monitor and promptly
share data on surface water dynamics to facilitate informed decision-
making and the implementation of effective remedial actions (Giardino et
al, 2010).

Surface water (SW) is an indispensable resource that significantly
influences everyday life. Its versatile applications encompass
consumption, agricultural irrigation, aquaculture, and thermoelectric
cooling. Variations in surface water patterns serve as valuable indicators
of environmental, climatic, and human-induced alterations in land cover.
From a strategic perspective, SW stands as a crucial asset for human well-
being and societal advancement (Ahmed et al.,, 2017). It plays a vital role
in sustaining human populations, agricultural productivity, and
ecosystems (Lu et al,, 2011). Notably, drinkable water sources include
precipitation, groundwater, and a variety of surface water bodies like
rivers, ponds, and lakes (Mueller et al, 2016). Therefore, precise
extraction of surface water regions is pivotal (Elsahabi et al, 2016).
Accurate mapping of surface water holds paramount importance for both
academic study and policy formulation, providing insights into its spatial
and temporal distribution (National Researcher Council, 2008). Changes

Recent years have witnessed transformations in land cover and land use in water levels are often identified through the extraction of water-related

on Earth. Numerous studies underscore the significance of recognizing
these shifts, such as those between agriculture, forested areas, urban
expanses, and water bodies. However, detecting these changes, especially
when they occur on a smaller scale, can be challenging due to their gradual
nature. Long-term historical data plays a pivotal role in equipping
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features from multiple satellite images, followed by comparative analysis
to detect discrepancies (Du et al,, 2012).

Water indices represent a relatively novel technique for detecting shifts in
aquatic ecosystems. Compared to classification-based approaches, index-
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based algorithms offer advantages in terms of accuracy, speed, simplicity,
and their ability to function without prior information (Li et al, 2013).
Diverse algorithms for extracting water from satellite imagery have been
developed and applied. Statistical pattern recognition methods encompass
both unsupervised classification methods that identify endmembers and
supervised techniques that employ ground truth data (Li et al., 20132;
Nath and Deb, 2010; Sivanpillai and Miller, 2010; Karpatne et al,, 2016;
Tulbure and Broich, 2013; Acharya et al.,, 2016). Among these, index-based
approaches are commonly employed for assessing surface water, utilizing
threshold values to distinguish water from the background. Examples of
such indices include the Normalized Difference Water Index (NDWI), the
Modified Normalized Difference Water Index (MNDWI), the Water Ratio
Index (WRI), and the Normalized Difference Vegetation Index (NDVI)
(McFeeters, 1996; Xu, 2006; Shen and Li, 2010; Rouse et al, 1973).
However, challenges arise in setting appropriate thresholds for various
conditions, such as shading, topography, forests, urban areas, and
coastlines (Acharyaetal, 2017).

In the field of natural resource management and environmental
assessment, remote sensing has rapidly advanced. Utilizing space-based
technology, remote sensing enables frequent and accurate updates to
surface water maps. The adoption of remote sensing has greatly improved
the analysis and sharing of information concerning alterations in diverse
natural resources, placing particular emphasis on surface water. Utilizing
remote sensing in conjunction with geographic information systems (GIS)
allows for monitoring current conditions and spatiotemporal changes in
rivers, lakes, reservoirs, and other surface water features. Remote sensing
plays a crucial role not only in regions lacking field data and detailed maps
but also as a cost-effective alternative for detecting features and
understanding hydrogeological systems in well-mapped areas (Peng etal.,
2022).

Its applications span diverse domains, encompassing flood risk
assessment, damage mitigation, water resource management, analysis of
surface water availability variations, water quality monitoring and
assessment, and the study of water-related disease epidemiology (Dewan
etal, 2007; Ji et al,, 2009; Proud et al,, 2011; Prigent et al., 2012; He et al,,
2012; Guttler et al, 2013). Information on surface water is extracted and
analyzed using satellite sensors with varying spatial, temporal, and
spectral resolutions. Among these sensors, Landsat satellites are
extensively employed in surface water and environmental studies, often
serving as a foundational step in processing remotely sensed data.
Commonly utilized optical imaging water classification techniques can be
categorized into four main groups: thematic classification, linear
unmixing, single-band thresholding, and two-band spectral water indices
(Dambach et al., 2012; Lira, 2006; Sethre et al., 2005; Jain et al,, 2005; Jain
et al, 2006). Combining multiple approaches has also been proposed to
enhance the precision of water extraction (Jiang et al, 2012; Verpoorter et
al,, 2012; Ryu et al,, 2002). Notable examples of such efforts include studies
(Jiang et al,, 2012; Sun et al,, 2012; Verpoorter et al.,, 2012).

Water index algorithms play a prominent role in detecting water features
due to their simplicity, computational efficiency, and capacity to perform
well even in the presence of certain noise. These algorithms have
demonstrated excellent outcomes when applied to Landsat imagery.
Prominent among them are multiband water index techniques like the
Water Ratio Index (WRI) and the Automated Water Extraction Index
(AWEI) (Tri et al,, 2016).

In innumerable ways, surface water is an essential natural force. In order
to effectively manage and conserve this precious resource, it is crucial to
get an appreciation for their far-reaching effects. We can build a more
sustainable and resilient future for human societies and the natural world
by learning about the importance of surface water and the impacts of
hydrological climate changes that have led to its significant scarcity and
decline. This study aims to analyse the hydrological data for Bath, UK, with
the objective of understanding how surface water has responded to shifts
in climate and/or human activities. Additionally, it seeks to evaluate the
effectiveness of widely used water indices by employing time series
Landsat data to gauge their ability to capture variations in surface water
distribution.

2. BATH STUDY AREA

Bath, situated in the ceremonial county of Somerset, England, is renowned
for its historic Roman baths. Its population was recorded at 101,557
during the 2021 census. Nestled in the valley of the River Avon, Bath is
easily accessible, lying approximately 156 kilometers west of London and
11 kilometers southeast of Bristol. The city holds significant historical
value, being designated a World Heritage Site for its ancient Roman baths
since 1987, and subsequently added to the transnational World Heritage

Site of "Great Spa Towns of Europe" in 2021. Bath serves as the county seat
of Somerset and is its largest city (100 Largest Cities and Towns in the UK
by population, 2019). It is covering an area of 28 square kilometers (11
square miles), Bath features an iron bridge traversing a lake, while a
yellow stone structure stands in the distance. Trees on the left extend
towards the shoreline. Noteworthy is the cast-iron bridge at Sydney
Gardens, spanning the Kennet and Avon Canal, adjacent to Cleveland
House (Published Contaminated Land Inspection of the area surrounding
Bath, 2023). Another natural highlight is Kensington Meadows, a riverside
stretch with a mix of wooded and open spaces, designated as a local nature
reserve. The geothermal springs that supply the Roman baths are fed by
rainwater originating from the Mendip Hills. Geothermal energy forces hot
water upward through fissures and faults in the limestone. Daily,
1,170,000 liters of hot water, at 46 °C, gush from the Pennyquick geological
fracture (Kensington Meadows, 2016).

Bath experiences a climate typical of the broader Southwest of England,
characterized by mildness and frequent rainfall. The annual average
temperature hovers around 10 degrees Celsius. The presence of the
nearby ocean tempers seasonal temperature fluctuations compared to the
rest of the UK. July and August are the warmest months, with mean daily
maxima around 21 °C. Winters bring lows of 1 to 2 degrees Celsius. The
region benefits from the Azores high pressure during summer, yielding
pleasant weather, although inland convective clouds can limit sunshine.
Bath records fewer sunny days per year compared to the regional average
of 1,600. Precipitation, approximately 700 millimetres annually, is
influenced by Atlantic depressions and convective activity. These factors
contribute to a higher percentage of summer precipitation, often triggered
by ground heating leading to showers and thunderstorms. Snowfall,
spanning 8 to 15 days, is relatively common during winter. The strongest
average wind speeds occur from November to March, predominantly from
the southwest (South West England, 2006). Figures 1 and 2 provide visual
representations of Bath's Digital Elevation Model (DEM) and a 3-
dimensional portrayal of its surface land elevations.

2°38'0"W 2°29'30"W 2°21'0"W
Legend ;
= | pom Hign : 255 B
= 3
o] “ Low:m ©
&N
b
=z
o
= ]
o St
= | wn
S
o
=z
>
<
= =
> N <
~ wn
S
s A 0 3 6 12
L ! . L 1 Kilometers

2°38'0"W 2°29'30"W 2°21'0"W

Figure 1: Digital Elevation Model (DEM) of Bath in the UK.

Figure 2: 3-Dimensional view of Bath ground surface elevations.
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3. REMOTE SENSING METHODOLOGY

In contrast to direct, on-site observation, remote sensing involves
collecting data about an object or phenomenon from a distance. This term
commonly applies to data collection about Earth and other celestial bodies
within the solar system. Remote sensing finds utility in various fields like
geophysics, geography, and land surveying, as well as across multiple
branches of Earth science. In modern usage, "remote sensing" typically
refers to gathering information about Earth's surface using sensors aboard
satellites or aircraft. Signals, such as electromagnetic radiation, travel
through space, reaching both the Earth's oceans and its atmospheric
layers. When a signal is emitted from a satellite or aircraft and its reflection
is captured by a sensor, this constitutes "active" remote sensing. In
contrast, "passive” remote sensing occurs when an object is illuminated by
sunlight, and the radiation emitted or reflected from the object is collected
by a sensor. Passive sensors often measure radiation from reflected
sunlight. In active remote sensing, energy is actively transmitted to scan
objects and spaces, and the sensor captures the reflected or backscattered
radiation. Active techniques like radio detection and ranging (RADAR) and
light detection and ranging (LiDAR) utilize the time delay between signal
emission and reception to determine an object's position, velocity, and
direction.

Utilizing satellite imagery from Landsat 8 OLT/TIRS, this study establishes
a comprehensive system for mapping and monitoring water bodies. The
process encompasses data collection, image preprocessing, calculation of
spectral water indices, derivation of surface water indices, and the
successful fulfillment of the paper's objective. The L1T data sourced from
USGS Landsat imagery are geographically aligned and referenced to the
UTM (zone 29 N) coordinate system using the WGS 84 datum, presented
in GeoTIFF format (Gautam et al,, 2015). The Landsat images encompass a
variety of land cover types, including water, forests, non-forest vegetation,
bright and dark soil, brown soil, bright built areas, asphalt, dark
constructed areas, and shadows. To delve deeper into the influence of
different land cover types on water extraction accuracy, an analysis of
spectral data from these pristine pixels was conducted. The Water
Reflectance Index (WRI) and Automated Water Extraction Index (AWEI)
are both formulated by combining data from four spectral bands of
Landsat 8 OLI, enhancing the differentiation between water and darker
surfaces (Shen and Li, 2010; Feyisa et al, 2014). The WRI and AWEI are
devised to optimize the distinction between water and non-water regions
through band differencing, addition, and the application of specific
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coefficients. Consequently, three distinct equations (Egs. (1), (2), and (3)
are presented to achieve a more precise extraction of surface water while
effectively suppressing non-water pixels.

B +B
WRI = GreenTbRed

1

BNIRTBswIR1 S
AWEInsp = 4(Bgreen — Bswir1) — (0.25Byig + 2.75Bsyr2)  (2)
AWEIsh = BBlue + Z-SBGreen - 1'S(BNIR + BSWIRl) - O'ZSBSWIRZ (3)

Where: where B is the reflectance value of spectral bands of Landsat 8 OLI:
Band 2 (Blue), Band 3 (Green), Band 4 (Red), Band 5 Near Infrared (NIR),
Band 6 Shortwave Infrared (SWIR1) and Band 7 Shortwave Infrared
(SWIR2).

The AWEI nsh index is designed to effectively exclude non-water pixels,
like dark building surfaces in urban contexts. AWEI sh, on the other hand,
primarily aims to improve accuracy by eliminating shadow pixels that
AWEI nsh might miss. Eq. (2) is optimized for situations where shadows
have minimal impact, indicated by the "nsh" subscript, while Eq. (3) is
tailored to enhance water extraction precision in regions with shadows or
other dark surfaces, denoted by the "sh" subscript. However, Eq. (3) may
inadvertently misidentify highly reflective materials like ice, snow, and
reflective rooftops as water.

Analysis of reflectance properties across various land cover types informs
the coefficients used in Egs. (2) and (3), as well as the sums of bands within
the specified spectrum. These coefficients are empirically determined
based on reflectance patterns observed across a dataset of pure pixels
representing different land cover types. To ensure water and non-water
surfaces with low reflectance are distinct, an iterative approach is
employed to find optimal coefficient values. Rounding coefficients
enhances user-friendliness. By constraining non-water pixels to values
below 0 and water pixels to values above 0, this coefficient selection not
only improves the differentiation of water pixels from others but also
stabilizes the threshold for identifying water.

To directly extract water index values (WRI, AWEI nsh, and AWEI sh) for
Bath, UK, the relevant bands representing the study area must be obtained.
Using ArcMap software, the study region's boundaries are extracted by
processing Landsat 8 OLI images for the necessary bands to implement
Egs. 1, 2, and 3. Figure 3 depicts the extracted bands for the study area.
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Figure 3: Landsat 8 OLI bands: a) Band 2 (Blue), b) Band 3 (Green), c) Band 4 (Red), d) Band 5 Near Infrared (NIR), ) Band 6 Shortwave Infrared
(SWIR1) and f) Band 7 Shortwave Infrared (SWIR2)

4.. RESULTS AND DISCUSSION The global limitation threshold between these categories was heightened

through this procedure, as illustrated in Fig. 4. Utilizing the geospatial
In this study, insights into the evolution of Bath and the driving factors analysis method, originally termed smart quantile, enabled the
behind it were gained through satellite image analysis. The purpose was identification of the demarcation between water and nonwater classes in
to develop scientific measures to mitigate potential future drought the processed images of Landsat 8-OLI.

disasters. The split-based approach (SBA) was employed to analyze local
threshold variations in scene data for classifying "water” and "nonwater".

< A > @ A : ()
: : A Intensity
______ Unlabeled
N :
' , v Index Value
Non-Water Threshold=? Water .

Figure 4: Portrays the Split-Based Approach (SBA): (a) Depiction of the SBA applied to the scene image, and (b) Visual representation depicting the pixel
value distribution for the two categories, namely water (As utilized by 46).
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The evaluation of the reliability and accuracy of threshold enhancements
for WRI and AWEI was performed through a visual method. This visual
approach entailed a comparison of the appearance of objects in Landsat 8
images with the classification results obtained from various thresholds,
including equal interval, quantile, geometrical interval, and natural break.

The Water Ratio Index (WRI) stands as a crucial and widely acknowledged
metric employed for the evaluation and administration of water resources
across diverse contexts. Serving as a quantitative measure, WRI aids in
assessing the efficacy of water utilization within specific regions, sectors,
or processes. It furnishes valuable insights into the equilibrium between
water availability and demand, empowering decision-makers to make
well-informed choices regarding water management, conservation, and
sustainable development. The fundamental concept of the Water Ratio
Index revolves around comparing the amount of water consumed or
withdrawn for a particular task, activity, or outcome with the existing
water resources. On a parallel note, the Automated Water Extraction Index
(AWEI) emerges as a specialized remote sensing and geospatial tool
designed for monitoring and evaluating water availability and vegetation
health, particularly in arid and semi-arid regions. AWEI harnesses satellite
imagery and computational algorithms to extract meaningful insights
about the presence and distribution of water resources and vegetation

Developed as a strategic response to the challenges posed by water
scarcity and the imperative for efficient water resource management,
AWEI presents a systematic approach to analyze and interpret satellite
data for quantifying water-related parameters.

Water index values were calculated and extensively presented in Figures
5, 6, and 7 for comparative purposes. Land and water surface areas were
quantified using various indices in the examined regions. Outputs of water
extraction from Landsat 8-OLI images are displayed in Figures 5, 6, and 7.
Upon visual inspection of Figure 6, it became evident that AWEI yielded
more accurate surface water mapping than WRI, particularly in
suppressing shadow and nonwater surfaces as compared with Figure 5. In
most cases, WRI yielded noisy results. However, at a test site in Bath,
Figures 6 and 7 showed minimal discrepancies between AWEI outcomes.
The visual examination of classification results indicated that AWEI was
effective in extracting surface water in the presence of shadow and urban
surfaces. In Bath, where significant shadow surfaces were absent, both
AWEI sh and WRI produced visually accurate outputs. Overall, the visual
inspection clearly demonstrated that AWEI sh outperformed AWEI nsh in
effectively suppressing shadowed surfaces. The outputs can be used to
generate quantitative values or visual representations that help
researchers, policymakers, and stakeholders make informed decisions.

cover. This information proves invaluable for water resource The formula and algorithm for AWEI computation may vary based on
management, environmental monitoring, and land wuse planning. specific research goals and study areas.
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Figure 6: AWEI nsh value of Bath as extracted from Landsat 8 OLI
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Figure 7: AWEI sh value of Bath as extracted from Landsat 8 OLI

The Water Ratio Index (WRI) serves to estimate soil or vegetation water
content. It is calculated by dividing the combined spectral index of green
and red visible light bands by the combined spectral index of short and
mid-wave infrared light bands, as detailed in Eq. (1). This index aids in
determining water features within a region, with possible values ranging
from O to 3. Typically, values exceeding one indicate the presence of water
or moisture. In WRI calculation, wet objects are assigned a value of 1,
effectively classifying the world into dry (no water on the surface) and wet
(areas with moisture-retaining plants and water bodies). High water index
values indicate wet vegetation cover and water objects, as shown in Figure
5. Bright areas in the central, eastern, and western sections likely depict
fields that have been watered or encompass water bodies. A combined
approach of analysis (visual identification of wet fields and classification
based on specific values to identify water objects) is essential for precise
image analysis.

In Eq. (2), significant positive values for water pixels arise from the
contrast between band 3 and band 6, leading to negative values for most
non-water pixels. Bands 5 and 7 have minimal water reflectance, hence
subtracting their values with varying weights amplifies negative values for
non-water pixels. Negative values for water pixels are rare in this
subtraction. Fig. 6 reveals that grass-covered, soil, bright buildings, and
other highly reflective surfaces for bands 5 or 7 yield large negative values
in the equation's outcome. The equation aims to enhance discrimination
between wet, dark, and dry surfaces (Fajar et al.,, 2022). While bands 5, 6,
and 7 are mostly absorbed by water, bands 2 and 3 exhibit higher
reflectance. Shadowed surfaces show uniform low reflectance, varying
depending on shading degree and surface type. Eq. (2) alone may not fully
eliminate shadows and low albedo surfaces. Fig. 6 demonstrates that
removing band 6 from band 3 may yield positive water and shadow values,
illustrating the challenge of excluding shadow pixels based solely on this
equation.

To address these limitations, Eq. (3) was developed to enhance separation
between water, shadows, and dark surfaces. As shown in Figure 7, bands
2 and 3 display significant reflectance variation between water and
shadows. Combining these bands while multiplying band 3 by a coefficient
increases separability, yielding positive values for water and
comparatively lower values for shadows. Despite a minimal impact on
water pixels, subtracting bands 5, 6, and 7 greatly affects non-water
surfaces, pushing them below zero. Eq. (4) was excluded from Egs. (2) and
(3) as its inclusion did not enhance separability and accuracy in initial
tests. Eq. (3) may not effectively distinguish between high albedo surfaces
like ice and clouds and water due to their large positive reflectance values
resulting from the inclusion of short wave bands (bands 2 and 3).

For the application of the two AWEI equations: 1) AWEI enhances the
separability of water pixels from non-water, ensuring that a threshold

near zero is suitable for collecting surface water, 2) AWEI sh is suggested
when shadows significantly affect accuracy; if shadows pose minimal
challenge, 3) AWEI nsh is recommended. In scenarios with both high
albedo surfaces and shadow/dark areas, using Egs. (2) and (3)
consecutively in a hierarchical manner is suggested. 4) In settings without
shaded areas, dark urban landscapes, or high albedo surfaces,
independent use of AWEI nsh is advised. As technology and remote
sensing capabilities continue to advance, the Automated Water Extraction
Index (AWEI) plays an increasingly important role in enhancing our
understanding of water-resource interactions, guiding sustainable
practices, and supporting effective decision-making in water-scarce
regions.

5. CONCLUSIONS

This study investigated the feasibility of applying Landsat 8 OLI data from
the Landsat 8 satellite to identify surface water bodies in both urban and
rural contexts within the city of Bath, which is located in the United
Kingdom. The remote sensing technology was used for this investigation.
The major purpose was to evaluate the efficacy of extraction indices in
improving the difference between water and non-water surfaces, hence
improving the accuracy of water extraction. This was particularly
important in regions where difficulties such as shadows and urban
surroundings make exact categorization difficult. By utilizing the OLI data
from Landsat 8, we were able to introduce two indices, namely the
Automated Water Extraction Index (AWEI) and the Water Ratio Index
(WRI), and then compare their respective performance.

Based on the data, it is clear that the Water Ratio Index (WRI) stands out
as the method that is both the most effective and the most basic when it
comes to extracting and mapping water resources. Even though there are
indices that can make a more nuanced distinction between land and water,
the World Resources Institute (WRI) is still a reliable instrument that can
help guide rational decision-making. According to the Water Ratio Index,
places that are struggling with water scarcity and insufficient moisture
encompass vast regions. This highlights potential looming concerns that
necessitate taking proactive efforts to counteract volatile environmental
and climatic alterations. It was discovered that the proportion of water-
rich or wet regions to total area was 1.24, which is a rather small
proportion and indicates poor coverage.

Before the Automated Water Extraction Index (AWEI) was implemented,
prevalent misclassifications were the consequence of pre-existing
obstacles such as shadows and dark surfaces. These challenges led to the
need for the AWEL As a result, we suggest AWEI as an improved water
index, particularly appropriate for extracting water data in settings
defined by the presence of shadows and man-made surfaces, where it is
difficult to obtain trustworthy results. AWEI has shown that it is capable
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of accurate categorization of edge pixels, and the fact that it maintains a
stable threshold makes it a good choice for analyzing changes in conditions
near the water's surface. When it came to recognizing the presence of
water, AWEI nsh values performed noticeably better than AWEI sh values.
However, the AWEI nsh revealed a substantially greater detection rate,
with a value of 11342.5 for these places, suggesting its enhanced accuracy.
While the AWEI sh failed to identify some moist spots (highest value =
359.5), the AWEI nsh did.

These indices and thresholds, when properly selected, have the ability to
efficiently isolate the specific aspects of interest from other features and
can be used for change detection reasons. The application of these indices
to the detection of distinct land coverings across a variety of seasons,
sensor datasets, and study locations is one possible approach that future
research could take.
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