
Water Conservation & Management (WCM) 8 (2) (2024) 171-178 

Quick Response Code Access this article online 

Website: 

www.watconman.org 

DOI: 

10.26480/wcm.02.2024.171.178 

Cite The Article: Hayder H. Kareem, Muammar H. Attaee, Zainab Ali Omran (2024). Estimation the Water Ratio Index (WRI) and Automated Water Extraction Index 
(AWEI) of Bath in The United Kingdom Using Remote Sensing Technology of The Multispectral Data of Landsat 8-Oli. Water Conservation & Management, 8(2): 171-178. 

ISSN: 2523-5664 (Print) 
ISSN: 2523-5672 (Online) 
CODEN: WCMABD 

RESEARCH ARTICLE 

Water Conservation & Management (WCM) 

DOI: http://doi.org/10.26480/wcm.02.2024.171.178 

ESTIMATION THE WATER RATIO INDEX (WRI) AND AUTOMATED WATER 
EXTRACTION INDEX (AWEI) OF BATH IN THE UNITED KINGDOM USING REMOTE 
SENSING TECHNOLOGY OF THE MULTISPECTRAL DATA OF LANDSAT 8-OLI 

Hayder H. Kareema*, Muammar H. Attaeeb, Zainab Ali Omranc 

a Structures and Water Resources Engineering Department, Faculty of Engineering, University of Kufa, Al-Najaf, Iraq 
b Department of Civil Engineering, College of Engineering, University of Misan, Misan, Amarah 62001, Iraq 
c Department of Civil Engineering, Faculty of Engineering, University of Babylon, Babil, Iraq 
*Corresponding Author’s E-Mail: hayderh.alshaibani@uokufa.edu.iq

This is an open access journal distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original work is properly cited 

ARTICLE DETAILS ABSTRACT

Article History: 

Received 23 September 2023 
Revised 26 October 2023 
Accepted 24 November 2023 
Available online 30 November 2023

Remote sensing is commonly utilized for surface cover classification and change analysis. An important 
approach in studying water resources and assessing hydrological drought involves utilizing remote sensing 
to extract various land cover features. Given the potential influence of environmental noise, the objective of 
this study is to devise an index that enhances water extraction accuracy while establishing a stable threshold 
value. The investigation focuses on the Water Ratio Index (WRI) and the Automated Water Extraction Index 
(AWEI) in the context of Bath, United Kingdom, particularly addressing areas with shadows and dark surfaces 
that often lead to misclassifications by other indices. The application and comparative performance 
assessment of these indices are conducted using GIS and Remote Sensing technology. WRI analysis reveals 
index values ranging from 0.83 to 1.24, highlighting regions with water or moisture content (WRI greater than 
1) and extensive areas devoid of water (WRI less than 1). Notably, AWEI nsh yields more accurate predictions 
than AWEI sh, which tends to identify shade and man-made surfaces rather than water surfaces. AWEI nsh 
exhibits a significantly higher water land cover figure (11342.5) compared to AWEI sh's minimal value 
(359.5). In scenarios where water information is susceptible to noise, AWEI proves to be a more suitable and 
effective alternative water index. It is recommended for use in locations with challenging water data, offering 
improved accuracy and reliability.
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1. INTRODUCTION 

Scientists from various disciplines are currently investigating the impacts 
of environmental changes on both natural ecosystems and human 
societies. Alterations in land use/cover (LULC), climate, and other 
environmental factors have had widespread consequences across the 
globe, with surface water being a fundamental Earth resource undergoing 
dynamic transformations over time and space. Extensive research has 
been dedicated to comprehending the ecological, health, social, and 
economic repercussions resulting from shifts in surface water (Bond et al., 
2008; Alderman et al., 2012; Li et al., 2012; Sun et al., 2012). Disasters like 
floods, the proliferation of waterborne diseases, and shortages of water in 
arid tropical regions often trace back to alterations in surface water levels. 
Consequently, it is of utmost importance to actively monitor and promptly 
share data on surface water dynamics to facilitate informed decision-
making and the implementation of effective remedial actions (Giardino et 
al., 2010). 

Recent years have witnessed transformations in land cover and land use 
on Earth. Numerous studies underscore the significance of recognizing 
these shifts, such as those between agriculture, forested areas, urban 
expanses, and water bodies. However, detecting these changes, especially 
when they occur on a smaller scale, can be challenging due to their gradual 
nature. Long-term historical data plays a pivotal role in equipping 

scientists with concrete information to identify, explain, and mitigate 
these transformations. 

Surface water (SW) is an indispensable resource that significantly 
influences everyday life. Its versatile applications encompass 
consumption, agricultural irrigation, aquaculture, and thermoelectric 
cooling. Variations in surface water patterns serve as valuable indicators 
of environmental, climatic, and human-induced alterations in land cover. 
From a strategic perspective, SW stands as a crucial asset for human well-
being and societal advancement (Ahmed et al., 2017). It plays a vital role 
in sustaining human populations, agricultural productivity, and 
ecosystems (Lu et al., 2011). Notably, drinkable water sources include 
precipitation, groundwater, and a variety of surface water bodies like 
rivers, ponds, and lakes (Mueller et al., 2016). Therefore, precise 
extraction of surface water regions is pivotal (Elsahabi et al., 2016). 
Accurate mapping of surface water holds paramount importance for both 
academic study and policy formulation, providing insights into its spatial 
and temporal distribution (National Researcher Council, 2008). Changes 
in water levels are often identified through the extraction of water-related 
features from multiple satellite images, followed by comparative analysis 
to detect discrepancies (Du et al., 2012). 

Water indices represent a relatively novel technique for detecting shifts in 
aquatic ecosystems. Compared to classification-based approaches, index-
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based algorithms offer advantages in terms of accuracy, speed, simplicity, 
and their ability to function without prior information (Li et al., 2013). 
Diverse algorithms for extracting water from satellite imagery have been 
developed and applied. Statistical pattern recognition methods encompass 
both unsupervised classification methods that identify endmembers and 
supervised techniques that employ ground truth data (Li et al., 20132; 
Nath and Deb, 2010; Sivanpillai and Miller, 2010; Karpatne et al., 2016; 
Tulbure and Broich, 2013; Acharya et al., 2016). Among these, index-based 
approaches are commonly employed for assessing surface water, utilizing 
threshold values to distinguish water from the background. Examples of 
such indices include the Normalized Difference Water Index (NDWI), the 
Modified Normalized Difference Water Index (MNDWI), the Water Ratio 
Index (WRI), and the Normalized Difference Vegetation Index (NDVI) 
(McFeeters, 1996; Xu, 2006; Shen and Li, 2010; Rouse et al., 1973). 
However, challenges arise in setting appropriate thresholds for various 
conditions, such as shading, topography, forests, urban areas, and 
coastlines (Acharya et al., 2017). 

In the field of natural resource management and environmental 
assessment, remote sensing has rapidly advanced. Utilizing space-based 
technology, remote sensing enables frequent and accurate updates to 
surface water maps. The adoption of remote sensing has greatly improved 
the analysis and sharing of information concerning alterations in diverse 
natural resources, placing particular emphasis on surface water. Utilizing 
remote sensing in conjunction with geographic information systems (GIS) 
allows for monitoring current conditions and spatiotemporal changes in 
rivers, lakes, reservoirs, and other surface water features. Remote sensing 
plays a crucial role not only in regions lacking field data and detailed maps 
but also as a cost-effective alternative for detecting features and 
understanding hydrogeological systems in well-mapped areas (Peng et al., 
2022).  

Its applications span diverse domains, encompassing flood risk 
assessment, damage mitigation, water resource management, analysis of 
surface water availability variations, water quality monitoring and 
assessment, and the study of water-related disease epidemiology (Dewan 
et al., 2007; Ji et al., 2009; Proud et al., 2011; Prigent et al., 2012; He et al., 
2012; Guttler et al., 2013). Information on surface water is extracted and 
analyzed using satellite sensors with varying spatial, temporal, and 
spectral resolutions. Among these sensors, Landsat satellites are 
extensively employed in surface water and environmental studies, often 
serving as a foundational step in processing remotely sensed data. 
Commonly utilized optical imaging water classification techniques can be 
categorized into four main groups: thematic classification, linear 
unmixing, single-band thresholding, and two-band spectral water indices 
(Dambach et al., 2012; Lira, 2006; Sethre et al., 2005; Jain et al., 2005; Jain 
et al., 2006). Combining multiple approaches has also been proposed to 
enhance the precision of water extraction (Jiang et al., 2012; Verpoorter et 
al., 2012; Ryu et al., 2002). Notable examples of such efforts include studies 
(Jiang et al., 2012; Sun et al., 2012; Verpoorter et al., 2012). 

Water index algorithms play a prominent role in detecting water features 
due to their simplicity, computational efficiency, and capacity to perform 
well even in the presence of certain noise. These algorithms have 
demonstrated excellent outcomes when applied to Landsat imagery. 
Prominent among them are multiband water index techniques like the 
Water Ratio Index (WRI) and the Automated Water Extraction Index 
(AWEI) (Tri et al., 2016). 

In innumerable ways, surface water is an essential natural force. In order 
to effectively manage and conserve this precious resource, it is crucial to 
get an appreciation for their far-reaching effects. We can build a more 
sustainable and resilient future for human societies and the natural world 
by learning about the importance of surface water and the impacts of 
hydrological climate changes that have led to its significant scarcity and 
decline.  This study aims to analyse the hydrological data for Bath, UK, with 
the objective of understanding how surface water has responded to shifts 
in climate and/or human activities. Additionally, it seeks to evaluate the 
effectiveness of widely used water indices by employing time series 
Landsat data to gauge their ability to capture variations in surface water 
distribution. 

2. BATH STUDY AREA 

Bath, situated in the ceremonial county of Somerset, England, is renowned 
for its historic Roman baths. Its population was recorded at 101,557 
during the 2021 census. Nestled in the valley of the River Avon, Bath is 
easily accessible, lying approximately 156 kilometers west of London and 
11 kilometers southeast of Bristol. The city holds significant historical 
value, being designated a World Heritage Site for its ancient Roman baths 
since 1987, and subsequently added to the transnational World Heritage 

Site of "Great Spa Towns of Europe" in 2021. Bath serves as the county seat 
of Somerset and is its largest city (100 Largest Cities and Towns in the UK 
by population, 2019). It is covering an area of 28 square kilometers (11 
square miles), Bath features an iron bridge traversing a lake, while a 
yellow stone structure stands in the distance. Trees on the left extend 
towards the shoreline. Noteworthy is the cast-iron bridge at Sydney 
Gardens, spanning the Kennet and Avon Canal, adjacent to Cleveland 
House (Published Contaminated Land Inspection of the area surrounding 
Bath, 2023). Another natural highlight is Kensington Meadows, a riverside 
stretch with a mix of wooded and open spaces, designated as a local nature 
reserve. The geothermal springs that supply the Roman baths are fed by 
rainwater originating from the Mendip Hills. Geothermal energy forces hot 
water upward through fissures and faults in the limestone. Daily, 
1,170,000 liters of hot water, at 46 °C, gush from the Pennyquick geological 
fracture (Kensington Meadows, 2016). 

Bath experiences a climate typical of the broader Southwest of England, 
characterized by mildness and frequent rainfall. The annual average 
temperature hovers around 10 degrees Celsius. The presence of the 
nearby ocean tempers seasonal temperature fluctuations compared to the 
rest of the UK. July and August are the warmest months, with mean daily 
maxima around 21 °C. Winters bring lows of 1 to 2 degrees Celsius. The 
region benefits from the Azores high pressure during summer, yielding 
pleasant weather, although inland convective clouds can limit sunshine. 
Bath records fewer sunny days per year compared to the regional average 
of 1,600. Precipitation, approximately 700 millimetres annually, is 
influenced by Atlantic depressions and convective activity. These factors 
contribute to a higher percentage of summer precipitation, often triggered 
by ground heating leading to showers and thunderstorms. Snowfall, 
spanning 8 to 15 days, is relatively common during winter. The strongest 
average wind speeds occur from November to March, predominantly from 
the southwest (South West England, 2006). Figures 1 and 2 provide visual 
representations of Bath's Digital Elevation Model (DEM) and a 3-
dimensional portrayal of its surface land elevations. 

Figure 1: Digital Elevation Model (DEM) of Bath in the UK. 

Figure 2: 3-Dimensional view of Bath ground surface elevations. 
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3. REMOTE SENSING METHODOLOGY

In contrast to direct, on-site observation, remote sensing involves 

collecting data about an object or phenomenon from a distance. This term 

commonly applies to data collection about Earth and other celestial bodies 

within the solar system. Remote sensing finds utility in various fields like 

geophysics, geography, and land surveying, as well as across multiple 

branches of Earth science. In modern usage, "remote sensing" typically 

refers to gathering information about Earth's surface using sensors aboard 

satellites or aircraft. Signals, such as electromagnetic radiation, travel 

through space, reaching both the Earth's oceans and its atmospheric 

layers. When a signal is emitted from a satellite or aircraft and its reflection 

is captured by a sensor, this constitutes "active" remote sensing. In 

contrast, "passive" remote sensing occurs when an object is illuminated by 

sunlight, and the radiation emitted or reflected from the object is collected 

by a sensor. Passive sensors often measure radiation from reflected 

sunlight. In active remote sensing, energy is actively transmitted to scan 

objects and spaces, and the sensor captures the reflected or backscattered 

radiation. Active techniques like radio detection and ranging (RADAR) and 

light detection and ranging (LiDAR) utilize the time delay between signal 

emission and reception to determine an object's position, velocity, and 

direction. 

Utilizing satellite imagery from Landsat 8 OLT/TIRS, this study establishes 

a comprehensive system for mapping and monitoring water bodies. The 

process encompasses data collection, image preprocessing, calculation of 

spectral water indices, derivation of surface water indices, and the 

successful fulfillment of the paper's objective. The L1T data sourced from 

USGS Landsat imagery are geographically aligned and referenced to the 

UTM (zone 29 N) coordinate system using the WGS 84 datum, presented 

in GeoTIFF format (Gautam et al., 2015). The Landsat images encompass a 

variety of land cover types, including water, forests, non-forest vegetation, 

bright and dark soil, brown soil, bright built areas, asphalt, dark 

constructed areas, and shadows. To delve deeper into the influence of 

different land cover types on water extraction accuracy, an analysis of 

spectral data from these pristine pixels was conducted. The Water 

Reflectance Index (WRI) and Automated Water Extraction Index (AWEI) 

are both formulated by combining data from four spectral bands of 

Landsat 8 OLI, enhancing the differentiation between water and darker 

surfaces (Shen and Li, 2010; Feyisa et al., 2014). The WRI and AWEI are 

devised to optimize the distinction between water and non-water regions 

through band differencing, addition, and the application of specific 

coefficients. Consequently, three distinct equations (Eqs. (1), (2), and (3) 

are presented to achieve a more precise extraction of surface water while 

effectively suppressing non-water pixels. 

𝑊𝑅𝐼 =
𝐵𝐺𝑟𝑒𝑒𝑛+𝐵𝑅𝑒𝑑

𝐵𝑁𝐼𝑅+𝐵𝑆𝑊𝐼𝑅1
  (1) 

𝐴𝑊𝐸𝐼𝑛𝑠ℎ = 4(𝐵𝐺𝑟𝑒𝑒𝑛 − 𝐵𝑆𝑊𝐼𝑅1) − (0.25𝐵𝑁𝐼𝑅 + 2.75𝐵𝑆𝑊𝐼𝑅2)       (2) 

𝐴𝑊𝐸𝐼𝑠ℎ = 𝐵𝐵𝑙𝑢𝑒 + 2.5𝐵𝐺𝑟𝑒𝑒𝑛 − 1.5(𝐵𝑁𝐼𝑅 + 𝐵𝑆𝑊𝐼𝑅1) − 0.25𝐵𝑆𝑊𝐼𝑅2             (3) 

Where: where B is the reflectance value of spectral bands of Landsat 8 OLI: 

Band 2 (Blue), Band 3 (Green), Band 4 (Red), Band 5 Near Infrared (NIR), 

Band 6 Shortwave Infrared (SWIR1) and Band 7 Shortwave Infrared 

(SWIR2). 

The AWEI nsh index is designed to effectively exclude non-water pixels, 

like dark building surfaces in urban contexts. AWEI sh, on the other hand, 

primarily aims to improve accuracy by eliminating shadow pixels that 

AWEI nsh might miss. Eq. (2) is optimized for situations where shadows 

have minimal impact, indicated by the "nsh" subscript, while Eq. (3) is 

tailored to enhance water extraction precision in regions with shadows or 

other dark surfaces, denoted by the "sh" subscript. However, Eq. (3) may 

inadvertently misidentify highly reflective materials like ice, snow, and 

reflective rooftops as water. 

Analysis of reflectance properties across various land cover types informs 

the coefficients used in Eqs. (2) and (3), as well as the sums of bands within 

the specified spectrum. These coefficients are empirically determined 

based on reflectance patterns observed across a dataset of pure pixels 

representing different land cover types. To ensure water and non-water 

surfaces with low reflectance are distinct, an iterative approach is 

employed to find optimal coefficient values. Rounding coefficients 

enhances user-friendliness. By constraining non-water pixels to values 

below 0 and water pixels to values above 0, this coefficient selection not 

only improves the differentiation of water pixels from others but also 

stabilizes the threshold for identifying water. 

To directly extract water index values (WRI, AWEI nsh, and AWEI sh) for 

Bath, UK, the relevant bands representing the study area must be obtained. 

Using ArcMap software, the study region's boundaries are extracted by 

processing Landsat 8 OLI images for the necessary bands to implement 

Eqs. 1, 2, and 3. Figure 3 depicts the extracted bands for the study area. 

Band 2 Band 3 
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Band 4 Band 5 

Band 6 Band 7 

Figure 3: Landsat 8 OLI bands: a) Band 2 (Blue), b) Band 3 (Green), c) Band 4 (Red), d) Band 5 Near Infrared (NIR), e) Band 6 Shortwave Infrared 
(SWIR1) and f) Band 7 Shortwave Infrared (SWIR2) 

4. RESULTS AND DISCUSSION 

In this study, insights into the evolution of Bath and the driving factors 
behind it were gained through satellite image analysis. The purpose was 
to develop scientific measures to mitigate potential future drought 
disasters. The split-based approach (SBA) was employed to analyze local 
threshold variations in scene data for classifying "water" and "nonwater".  

The global limitation threshold between these categories was heightened 
through this procedure, as illustrated in Fig. 4. Utilizing the geospatial 
analysis method, originally termed smart quantile, enabled the 
identification of the demarcation between water and nonwater classes in 
the processed images of Landsat 8-OLI.

Figure 4: Portrays the Split-Based Approach (SBA): (a) Depiction of the SBA applied to the scene image, and (b) Visual representation depicting the pixel 
value distribution for the two categories, namely water (As utilized by 46). 1 

A 

Threshold=? 

Intensity 

Unlabeled 

Index Value 

Water Non-Water 

U B 

(a) (b)
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The evaluation of the reliability and accuracy of threshold enhancements 
for WRI and AWEI was performed through a visual method. This visual 
approach entailed a comparison of the appearance of objects in Landsat 8 
images with the classification results obtained from various thresholds, 
including equal interval, quantile, geometrical interval, and natural break. 

The Water Ratio Index (WRI) stands as a crucial and widely acknowledged 
metric employed for the evaluation and administration of water resources 
across diverse contexts. Serving as a quantitative measure, WRI aids in 
assessing the efficacy of water utilization within specific regions, sectors, 
or processes. It furnishes valuable insights into the equilibrium between 
water availability and demand, empowering decision-makers to make 
well-informed choices regarding water management, conservation, and 
sustainable development. The fundamental concept of the Water Ratio 
Index revolves around comparing the amount of water consumed or 
withdrawn for a particular task, activity, or outcome with the existing 
water resources. On a parallel note, the Automated Water Extraction Index 
(AWEI) emerges as a specialized remote sensing and geospatial tool 
designed for monitoring and evaluating water availability and vegetation 
health, particularly in arid and semi-arid regions. AWEI harnesses satellite 
imagery and computational algorithms to extract meaningful insights 
about the presence and distribution of water resources and vegetation 
cover. This information proves invaluable for water resource 
management, environmental monitoring, and land use planning. 

Developed as a strategic response to the challenges posed by water 
scarcity and the imperative for efficient water resource management, 
AWEI presents a systematic approach to analyze and interpret satellite 
data for quantifying water-related parameters. 

Water index values were calculated and extensively presented in Figures 
5, 6, and 7 for comparative purposes. Land and water surface areas were 
quantified using various indices in the examined regions. Outputs of water 
extraction from Landsat 8-OLI images are displayed in Figures 5, 6, and 7. 
Upon visual inspection of Figure 6, it became evident that AWEI yielded 
more accurate surface water mapping than WRI, particularly in 
suppressing shadow and nonwater surfaces as compared with Figure 5. In 
most cases, WRI yielded noisy results. However, at a test site in Bath, 
Figures 6 and 7 showed minimal discrepancies between AWEI outcomes. 
The visual examination of classification results indicated that AWEI was 
effective in extracting surface water in the presence of shadow and urban 
surfaces. In Bath, where significant shadow surfaces were absent, both 
AWEI sh and WRI produced visually accurate outputs. Overall, the visual 
inspection clearly demonstrated that AWEI sh outperformed AWEI nsh in 
effectively suppressing shadowed surfaces. The outputs can be used to 
generate quantitative values or visual representations that help 
researchers, policymakers, and stakeholders make informed decisions. 
The formula and algorithm for AWEI computation may vary based on 
specific research goals and study areas. 

Figure 5: WRI value of Bath as extracted from Landsat 8 OLI 

Figure 6: AWEI nsh value of Bath as extracted from Landsat 8 OLI 
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Figure 7: AWEI sh value of Bath as extracted from Landsat 8 OLI 

The Water Ratio Index (WRI) serves to estimate soil or vegetation water 
content. It is calculated by dividing the combined spectral index of green 
and red visible light bands by the combined spectral index of short and 
mid-wave infrared light bands, as detailed in Eq. (1). This index aids in 
determining water features within a region, with possible values ranging 
from 0 to 3. Typically, values exceeding one indicate the presence of water 
or moisture. In WRI calculation, wet objects are assigned a value of 1, 
effectively classifying the world into dry (no water on the surface) and wet 
(areas with moisture-retaining plants and water bodies). High water index 
values indicate wet vegetation cover and water objects, as shown in Figure 
5. Bright areas in the central, eastern, and western sections likely depict 
fields that have been watered or encompass water bodies. A combined 
approach of analysis (visual identification of wet fields and classification 
based on specific values to identify water objects) is essential for precise 
image analysis. 

In Eq. (2), significant positive values for water pixels arise from the 
contrast between band 3 and band 6, leading to negative values for most 
non-water pixels. Bands 5 and 7 have minimal water reflectance, hence 
subtracting their values with varying weights amplifies negative values for 
non-water pixels. Negative values for water pixels are rare in this 
subtraction. Fig. 6 reveals that grass-covered, soil, bright buildings, and 
other highly reflective surfaces for bands 5 or 7 yield large negative values 
in the equation's outcome. The equation aims to enhance discrimination 
between wet, dark, and dry surfaces (Fajar et al., 2022). While bands 5, 6, 
and 7 are mostly absorbed by water, bands 2 and 3 exhibit higher 
reflectance. Shadowed surfaces show uniform low reflectance, varying 
depending on shading degree and surface type. Eq. (2) alone may not fully 
eliminate shadows and low albedo surfaces. Fig. 6 demonstrates that 
removing band 6 from band 3 may yield positive water and shadow values, 
illustrating the challenge of excluding shadow pixels based solely on this 
equation. 

To address these limitations, Eq. (3) was developed to enhance separation 
between water, shadows, and dark surfaces. As shown in Figure 7, bands 
2 and 3 display significant reflectance variation between water and 
shadows. Combining these bands while multiplying band 3 by a coefficient 
increases separability, yielding positive values for water and 
comparatively lower values for shadows. Despite a minimal impact on 
water pixels, subtracting bands 5, 6, and 7 greatly affects non-water 
surfaces, pushing them below zero. Eq. (4) was excluded from Eqs. (2) and 
(3) as its inclusion did not enhance separability and accuracy in initial 
tests. Eq. (3) may not effectively distinguish between high albedo surfaces 
like ice and clouds and water due to their large positive reflectance values 
resulting from the inclusion of short wave bands (bands 2 and 3). 

For the application of the two AWEI equations: 1) AWEI enhances the 
separability of water pixels from non-water, ensuring that a threshold 

near zero is suitable for collecting surface water, 2) AWEI sh is suggested 
when shadows significantly affect accuracy; if shadows pose minimal 
challenge, 3) AWEI nsh is recommended. In scenarios with both high 
albedo surfaces and shadow/dark areas, using Eqs. (2) and (3) 
consecutively in a hierarchical manner is suggested. 4) In settings without 
shaded areas, dark urban landscapes, or high albedo surfaces, 
independent use of AWEI nsh is advised. As technology and remote 
sensing capabilities continue to advance, the Automated Water Extraction 
Index (AWEI) plays an increasingly important role in enhancing our 
understanding of water-resource interactions, guiding sustainable 
practices, and supporting effective decision-making in water-scarce 
regions. 

5. CONCLUSIONS 

This study investigated the feasibility of applying Landsat 8 OLI data from 
the Landsat 8 satellite to identify surface water bodies in both urban and 
rural contexts within the city of Bath, which is located in the United 
Kingdom. The remote sensing technology was used for this investigation. 
The major purpose was to evaluate the efficacy of extraction indices in 
improving the difference between water and non-water surfaces, hence 
improving the accuracy of water extraction. This was particularly 
important in regions where difficulties such as shadows and urban 
surroundings make exact categorization difficult. By utilizing the OLI data 
from Landsat 8, we were able to introduce two indices, namely the 
Automated Water Extraction Index (AWEI) and the Water Ratio Index 
(WRI), and then compare their respective performance. 

Based on the data, it is clear that the Water Ratio Index (WRI) stands out 
as the method that is both the most effective and the most basic when it 
comes to extracting and mapping water resources. Even though there are 
indices that can make a more nuanced distinction between land and water, 
the World Resources Institute (WRI) is still a reliable instrument that can 
help guide rational decision-making. According to the Water Ratio Index, 
places that are struggling with water scarcity and insufficient moisture 
encompass vast regions. This highlights potential looming concerns that 
necessitate taking proactive efforts to counteract volatile environmental 
and climatic alterations. It was discovered that the proportion of water-
rich or wet regions to total area was 1.24, which is a rather small 
proportion and indicates poor coverage. 

Before the Automated Water Extraction Index (AWEI) was implemented, 
prevalent misclassifications were the consequence of pre-existing 
obstacles such as shadows and dark surfaces. These challenges led to the 
need for the AWEI. As a result, we suggest AWEI as an improved water 
index, particularly appropriate for extracting water data in settings 
defined by the presence of shadows and man-made surfaces, where it is 
difficult to obtain trustworthy results. AWEI has shown that it is capable 
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of accurate categorization of edge pixels, and the fact that it maintains a 
stable threshold makes it a good choice for analyzing changes in conditions 
near the water's surface. When it came to recognizing the presence of 
water, AWEI nsh values performed noticeably better than AWEI sh values. 
However, the AWEI nsh revealed a substantially greater detection rate, 
with a value of 11342.5 for these places, suggesting its enhanced accuracy. 
While the AWEI sh failed to identify some moist spots (highest value = 
359.5), the AWEI nsh did. 

These indices and thresholds, when properly selected, have the ability to 
efficiently isolate the specific aspects of interest from other features and 
can be used for change detection reasons. The application of these indices 
to the detection of distinct land coverings across a variety of seasons, 
sensor datasets, and study locations is one possible approach that future 
research could take. 
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