

Water Conservation & Management (WCM)

DOI: http://doi.org/10.26480/wcm.03.2024.368.373

ISSN: 2523-5672 (Online) CODEN: WCMABD

RESEARCH ARTICLE

EVALUATION AND STATISTICAL ANALYSIS OF SURFACE WATER QUALITY IN OUED ASSAKA IN THE PROVINCE OF GUELMIME, MOROCCO

Mariam El-Marmar^a, Mouhsine Hadine^b, Ghizlane Fattah^b, Fatima Zahra Moussaid^c, Bachegour, Hikma^c, Jamal Mabrouki^d, Mohammed Fekhaoui^a

- ^aDepartment of Zoology and Animal Ecology, Scientific Institute, Mohammed V University in Rabat, Av. Ibn Batouta, B.P 703, 10106, Rabat, Morocco
- ^bGeology of the Engineer and the Environment, Mohammadia School of Engineers (EMI), B.P. 765, Agdal, Rabat, Morocco.
- ^cFaculty of Economy and Management, Ibn Tofail University, Kenitra, Morocco.
- dMohammed V University in Rabat, Faculty of Science, AV Ibn Battouta, BP1014, Agdal, Rabat, Morocco.
- * Corresponding authors: jamal.mabrouki@um5r.ac.ma

This is an open access journal distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

ARTICLE DETAILS

Article History:

Received 8 April 2024 Revised 15 May 2024 Accepted 21 June 2024 Available online 28 June 2024

ABSTRACT

One of the main environmental problems in Morocco is the water issue, due to the health and economic consequences of water pollution and inadequate sanitation, as well as the pressure on resources caused by increasing water demand. Water pollution is a scourge that threatens Morocco and other African countries. Morocco has one of the smallest natural water reserves in the world. In this respect, the Guelmim province region has seen an increase in critical points in terms of problems linked to the water system, which is defined by a fertile depression that threatens to flood, as well as problems linked to the scarcity of water resources and erosion. There are even environmental threats. In this study, we analyzed the water quality of the Oued d'Assaka basin in the Guelmim province. The results obtained showed that the alkalinity level of the water was stable, as the hydrogen potential was stable between 6.5 and 8.5. The electrical conductivity of the Assaka basin showed an increase in values exceeding standards by 2140 μ s.cm⁻¹ on point 4 and 4830 μ s.cm⁻¹ on point 2 of the sampling. Statistical analyses based on Pearson correlation were carried out for some of the physicochemical parameters analyzed in this study, notably pH, temperature, turbidity, and water hardness.

KEYWORDS

Assaka; Pollution; water quality; Pearson correlation; statistical analysis (SPSS).

1. Introduction

The main reasons for wastewater treatment before its possible reuse are Morocco's drought, the demands of economic development, the generalization of access to drinking water for all citizens, and the protection of receiving environments. It is crucial for socio-economic development at local, regional, and national levels (Bhateria and Jain, 2016; Noureddine et al 2024; El Mahmouhi et al., 2016). Consequently, water resource management remains a major challenge, particularly in countries with arid or semi-arid climates, where these resources are crucial to the development of human, economic, and social activities (Taleb et al., 2021). Water is a natural resource vital to the survival of any ecosystem. For a society faced with growing water needs, preserving its quality remains an absolute priority (Afi et al., 2022). It is crucial to socioeconomic development at local, regional, and national levels (El-Moustaqim et al., 2024; El-Moustaqim et al., 2023; Lesley et al., 2023). Consequently, water resource management remains a major challenge, particularly in countries with arid or semi-arid climates, where these resources are crucial to the development of human, economic, and social activities (mondiale de la Santé, 2019). One of the main environmental problems in Morocco is the water issue, due to the health and economic consequences of water pollution and inadequate sanitation, as well as the pressure exerted on resources by increasing water demand (Mabrouki et al., 2019; Mabrouki et al., 2022; Mabrouki et al., 2022, Mabrouki et al., 2023, Mabrouki et al., 2022). Water resources remain a major challenge to be preserved and used efficiently, particularly in countries with arid or semi-arid climates (Hem, 1959; Kijjanapanich, 2013). These reserves have a significant impact on human, economic, and social activities. Natural and human constraints, as well as water management and conservation, can affect the quality of natural surface water. In the province of Guelmim, numerous springs are frequently found in wadi beds (Kouassi et al., 2013). They are used in construction, play a role in the development of the agricultural sector, and are a major tourist attraction and place of relaxation (Oumara and El Youssfi, 2022). The water table exploited in the Guelmim Plain is the most important aquifer recognized in the southern Anti-Atlas. The rapid expansion of the region's population centers and the growing development of agricultural activity have led to overexploitation of the aquifer, resulting in a significant drop in water levels (Taleb, 2021; Lesley et al, 2023). In recent years, periods of drought have become increasingly common, resulting in an extremely large deficit that affects almost the entire country (Kouassi et al., 2013; Oumara and El Youssfi, 2022; Mahmouhi, 2016). The watershed appears to be a static unit of the landscape, but it is a dynamic and changing area hydrologically. Thus, the watershed is generally delimited on the surface by ridgelines, whose slopes divide the water between the different catchment areas (El Attaoui et al., 2023; Vecchio and Kuper, 2022; ATTOU, 2014). With the world's

 Quick Response Code
 Access this article online

 Website:
 DOI:

 www.watconman.org
 10.26480/wcm.03.2024.368.373

population growth and economic development, water consumption has almost doubled over the last fifty years. A great deal of work has already been done on the issue of water in Africa, and in particular on drinking water in large African cities located in arid or semi-arid environments (Lenntech, 2024; Boulal, 2017). In the Assaka area, domestic wastewater is discharged directly into public spaces. Rainwater from the internal basins of the town of Guelmim is considerable and poses a flooding risk for houses along the Assif Ouzro and Targa Oufella rivers (Agence du Bassin Hydraulique de Draa Oued Noun, 2024; El Blidi, 2006; Agoumi and Debbarh, 2005). In the absence of a sewage treatment plant or controlled landfill to stabilize it, the product of the cleaning of cesspools is discharged directly into the natural environment (Bergier, 2009; du Maroc, n.d.). This is a problem of road communication between the two banks and, consequently, of the equipment department. Existing constructions on the bed of the chaâbats and hermetic obstacles erected in the path of the runoff increase the risk of flooding (Bergier, 2009; Gharbi, 1986).

This work aims to provide a clear picture of the state of water quality in Oued Assaka de Guelmim, and to determine some of the origins of water pollution, within the limits of the analyses carried out at the various water quality monitoring network points, based on Moroccan water quality

standards and the hydrogeological study of the region.

2. MATERIALS AND METHODS

2.1 Presentation of the study area

The province of Guelmim, which was created by decree no. 2.79.123 of 01-01-1979, is located in the southeast of the Kingdom and is part of the Guelmim Oued Noun region. Assaka or the center of Targa-Wassay lies to the east-west of the town of Guelmime, some twenty kilometers away, and is served by the RP1300 provincial road (Chouafa Nesrine, 2022; Mohammed and Anas, 2021). Housing and cultivated land are concentrated on the left bank of Oued Assaka. Average annual rainfall is around 120 mm, but there is considerable random variability between 15 mm and 300 mm. At its mouth, the Oued Assaka basin, which drains the Guelmim basin, covers an area of 6,840 km² (du Maroc, n.d.; Humbert, 2013). The Oued Assaka, which crosses the coastal relief via a gorge, collects the residual floodwaters from these basins and from a complementary basin of 410 km², after spreading out over the plain (Mohammed and Anas, 2021; Mekki et al., 2021).

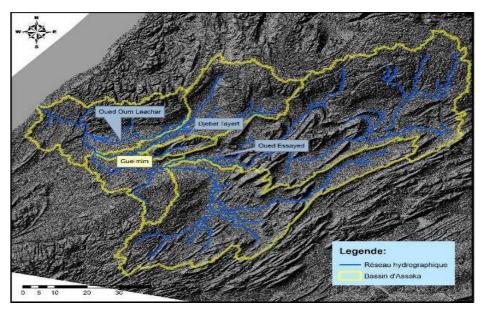


Figure 1: Presentation of the study area.

The Guelmim basin (Figure 1) is structured as a syncline, centered on the Jbel Tayert, crowned by the quartzite bars of the terminal Acadian. The fill on either side of these reliefs consists of plio-quaternary blanket deposits overlying the bedrock Acadian shales. In these areas, domestic wastewater is discharged directly into public spaces (Gharbi, 2024; Albab et al., 2013). Rainwater from the city's internal basins is considerable and poses a flooding risk for houses along the Assif Ouzro and Targa Oufella rivers. In the absence of a sewage treatment plant or controlled landfill to stabilize it, the sewage from cesspools is discharged directly into the natural environment. Wastewater from the municipal abattoir and slaughterhouse residues are also affected (Moussa et al., 2012; El Arabi, 2021).

2.2 Climate conditions

The study area is characterized by an arid climate (Figure 2), with very frequent winds causing sand accumulation (Brouyère et al., 2022; Ouhamdouch et al., 2018). The study area is characterized by a pre-Saharan climate where temperatures benefit from oceanic influence in the Guelmim basin to very arid Saharan conditions with harsh winters (between -7°C and -1°C) and hot summers (44°C) in the Drâa basin (Bekkar et al., 2023). Despite its latitude, the Atlantic Ocean more or less mitigates the effect of the Saharan continental climate. Average annual rainfall is around 120 mm but with considerable random irregularity, ranging from 15 mm to 300 mm (Bouaicha and Benabdelfadel, 2010; SIREDD Guelmim-Oued Noun, 2024).

Figure 2: Presentation of the Assaka wadi in Guelmim province.

2.3 Sampling method and Physical-chemical analysis

The water samples used for analysis in this study were taken during the period February 2021 to January 2022, of which four points were logically selected to sample the waters of the Oued d'Assaka basin in the Guelmim province and to carry out the physicochemical and other quality assessment analyses. Water flow velocities at survey points at the time of sampling the water body itself, current velocity is approximated by following a dropped object along a 10 m path.

To assess the basin's quality parameters and to identify the most polluting tributary or Oued in the feeder network, thus calling on the relevant departments to take action to reduce the level of pollution. The sampling campaign took into account the lithological diversity of the basin, as well as the distribution of activities at four points over twelve months, with sampling carried out successively over the months from February 30, 2021, to January 17, 2022.

Physical-chemical parameters include pH, electrical conductivity EC, and temperature $T^{\circ}C$, measured (in situ) in the field, and turbidity analyzed in the laboratory. These parameters were determined according to the analysis methods recommended by AFNOR standards. Results were evaluated and visualized using Excel 2016 software.

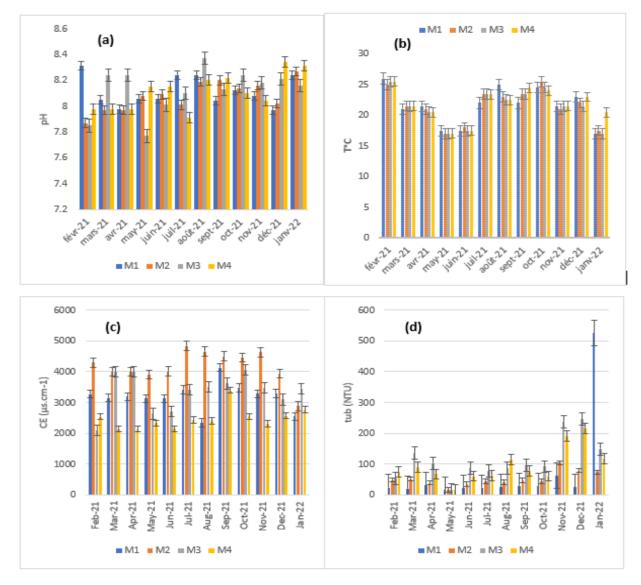
2.4 Statistical analysis

Principal component analysis was performed on the mean annual values of the physico-chemical parameters characterizing the four sampling points. This analysis highlighted the correlations between the various water parameters. Statistical analysis of the data was carried out using Microsoft Excel 2016 (Microsoft Corp) and SPSS Statistics (SPSS Inc.).

Mean values and standard deviations were determined. Pearson correlation coefficients were calculated.

3. RESULT AND DISCUSSION

3.1 Physical and chemical characterization


Detailed results of physico-chemical analyses of Guelmim province waters used in the Oued d'Assaka watershed are shown in Figure 3.

3.1.1 pH

The pH is also influenced by acid precipitation, biological activity, and certain industrial discharges. The quality criterion values for raw water supply are between 6.5 and 8.5, and between 6.5 and 9.0, to protect aquatic life. The pH values of the Assaka watershed show visible stability (Figure 3 (a)). The stable neutrality of the waters in the basin could be the result of an equilibrium between the high levels of carbon dioxide and dissolved calcium bicarbonates, stabilized by the buffering effect resulting from the high mineralization of the waters (Savean, 2014; Ouyang, 2005).

3.1.2 Temperature

Temperature variation in the Assaka basin of Guelmim province (Figure 3 (b)) displays distinct seasonal characteristics, reflecting regional climatic fluctuations. Data collected over several months reveal trends that highlight thermal differences between seasons. During the summer months, temperatures tend to reach higher levels, with peaks generally observed between months 9 and 12, due to increased sunshine and warmer weather conditions. In contrast, spring months show lower temperatures, with minimum values recorded between March and May, attributable to reduced sunshine and cooler climatic influences.

Figure 3: (a): Changes in pH at four points in the Assaka basin during the sampling period. (b): Variation in temperature during the sampling period. (c): Electrical conductivity differences at four locations. (d): Turbidity evolution.

3.1.3 Electrical Conductivity

The electrical conductivity of water expresses its overall mineralization and reflects its ionic charge. It is proportional to the concentration of ionizable salts, which in turn depends in part on water temperature. It is an index of the abundance of ions in water (Yehya, 2015). The Assaka basin waters analyzed show generally high conductivity values (Figure 3 (c)), well above the Guide Value set by European standards (100 $\mu s.cm^{-1}$). They generally range from 2140 $\mu s.cm^{-1}$ at sampling point 4 to 4830 $\mu s.cm^{-1}$ at sampling point 2. The high mineralization of the water at this point may be due either to the existence of a local saline geological formation or to the particularly marked impact of discharges (Quarouch et al., 2014).

3.1.4 Turbidity

Turbidity refers to the content of turbid matter in a liquid. In watercourses, it is generally caused by colloidal particles that absorb,

scatter, and/or reflect light. It is measured by various methods of photometry of turbid media, such as nephelometry, opacimeter, and turbidimetry. It is expressed in NTU (Nephelometric Turbidity Unit) (Chouafa Nesrine, 2022). Calibration is performed using solid controls. Turbidity data collected from four different sampling points reveal a significant variation in water clarity in the Assaka basin at Guelmim (Ouzanni et al., 2023). Turbidity values range from 16.80 NTU to 150 NTU (Figure 3 (d)), indicating a range from slightly turbid to very turbid water.

3.2 Statistical physicochemical study of the water in study point in doued Assaka

Water samples from the Assaka basin showed alkaline pH values ranging from 8 to 8.1, with an average of 8.075. Seasonal mean pH values ranged from 8 in spring to 8.1 in summer, and remained constant for the rest of the seasons (Table 1), indicating that there was no discernible change in pH concentration.

Table 1: Physico-chemical characteristics of Assaka basin water by season.											
Season	T water °C	PH	EC μs/cm	BOD5 mg/l	COD mg/l	SS mg/l	Ca 2+ meq/l	Mg2+ mg/l	Cl- mg/l	SO42- mg/l	NO32- mg/l
Spring	19,8	8	3219,2	65,4	153,1	114,5	234,6	91,4	245,8	457,1	130,7
Summer	21,3	8,1	3250	87,1	262,4	139	259,9	92,3	241,1	413	94,4
Autumn	21,3	8,1	3659,2	114,5	234,9	102,8	238,5	102,7	263,6	522,8	97,7
Winter	22	8,1	3065	85	264,8	172	262,8	66,5	189,4	444,3	130,4

The values observed were, however, within the WHO safe limits for consumption. A similar trend was also observed for conductivity. Conductivity values ranged from 3219.2 $\mu s/cm$ to 3065 $\mu s/cm$, with an overall mean value of 3298.35 $\mu s/cm$. Table 2 shows the seasonal mean

values for conductivity. The highest conductivity at the Assaka basin sampling points may be due to the degree of dissolved ions, pollutants, organic matter, and water temperature (Mekki et al., 2021).

Table 2: Concentration statistics for physical-chemical parameters in the Assaka basin.								
Physical and chemical parameter	Average	Standard deviation						
Temperature °C	21,100	0,9274						
рН	8,075	0,0500						
Electrical Conductivity μs/cm	3298,350	253,8158						
BOD5 mg/l	88,000	20,1893						
COD mg/l	228,800	52,2579						
SS mg/l	132,075	30,5934						
Ca ²⁺ meq/l	248,950	14,4551						
Mg^{2+} mg/l	88,225	15,3643						
Cl ⁻ mg/l	234,975	31,8913						
SO ₄ ²⁻ mg/l	459,300	46,2089						
NO ₃ - mg/l	113,300	19,9645						

Table 3: Pearson correlation of physicochemical characteristics of Assaka basin water.											
	Temperature water °C	рН	Electrical conductivity µs/cm	BOD5 mg/l	COD mg/l	SS mg/l	Ca²+ meq/l	Mg ²⁺ mg/l	Cl ⁻ mg/l	SO ₄ ²⁺ mg/l	NO ₃ - mg/l
Temperature water °C	1										
pH	0,934	1									
Electrical conductivity μs/cm	-0,063	0,208	1								
BOD5 mg/l	0,566	0,746	0,787	1							
COD mg/l	0,954*	0,966*	-0,046	0,548	1						
SS mg/l	0,638	0,383	-0,808	-0,272	0,588	1					
Ca ²⁺ meq/l	0,776	0,662	-0,581	-0,005	0,834	0,895	1				
Mg ²⁺ mg/l	-0,467	-0,138	0,841	0,401	-0,331	-0,935	-0,680	1			
Cl- mg/l	-0,543	-0,226	0,816	0,334	-0,416	-0,958*	-0,737	0,996**	1		
SO ₄ ²⁺ mg/l	-0,056	0,032	0,819	0,650	-0,213	-0,646	-0,672	0,493	0,496	1	
NO ₃ - mg/l	-0,254	-0,581	-0,663	-0,695	-0,457	0,384	-0,066	-0,673	-0,604	-0,148	1

^{*.} Correlation is significant at the 0.05 level (two-tailed).

Pearson's analysis was used to establish the matrix shown in **Table 3**. According to the data in the correlation table, there is a strong correlation between pH and COD, with a positive and significant value (r = 0.966^*). This is due to several factors, notably biological activity such as the decomposition of matter, which can lead to a decrease in pH due to the production of organic acids, resulting in a strong significant correlation between pH and COD. As well as chemical substances present in the water that can influence both pH and COD. Certain compounds present in water can react with others to form acids or bases, influencing pH and COD. This

analysis reveals a strong correlation between temperature and COD, with a value of (r=0.954), a positive and significant correlation. Similarly for chloride and magnesium ions, with a value of (r=0.996), the explanation for this strong correlation can be traced back to the contents of the basin, in particular the minerals rich in chloride and magnesium. As the water flows through these materials, the ions are dissolved, increasing the concentration in the water. Water sources in the Assaka basin, such as aquifers and rivers, can be influenced by the same geological processes that favour materials. Anthropogenic activities such as agricultural

^{**.} Correlation is significant at the 0.01 level (two-tailed).

irrigation, industry and the use of de-icing salts can increase ion concentrations, leading to a strong correlation (Hem, 1959; Chen et al., 2022; Lin et al., 2019; Elassassi et al., 2022).

4. CONCLUSION

Organic pollutants and heavy metals are the main pollutants. High loads and complex effluents render the water's assimilative capacity ineffective in most cases. It is therefore essential to find effective and accessible treatments. In this study, we analyzed the water quality of the Oued d'Assaka basin in Guelmim province. Statistical analyses based on Pearson correlation were carried out for some of the physicochemical parameters analyzed in this study, notably pH, temperature, electrical conductivity, COD, suspended solids, chloride, magnesium, sulfate and nitrate ions, turbidity, water hardness, and others. The results obtained for these analyses in the Assaka catchment studied showed a stable or alkalinity level of the water, as the Hydrogen potential and takes its stability between the interval of 6.5 and 8.5 by mean values oscillating between (7.77 and 8.34) indicating a satisfactory balance of notable acidity. The temperature at the study site varies seasonally according to regional chemical changes. Physico-chemical parameters showed a strong correlation between temperature and COD with a value of (r = 0.954), while chloride and magnesium ions showed a value of (r = 0.996) according to statistical analysis of the data using Pearson's correlation.

REFERENCES

- Afi, C., Hallam, J., Mimouni, A., Msanda, F., and Ait Aabd, N., 2022. Saline Water Irrigation Effect on Oil Yield and Quality of Argan Trees Domesticated in Laâyoune, Morocco. Environmental Sciences Proceedings, 16 (1), Art. no 1, 2022, doi: 10.3390/environsciproc2022016045.
- Agence du Bassin Hydraulique de Draa Oued Noun, 2024. Consulté le: 29 janvier 2024. [En ligne]. Disponible sur: https://www.abhdon.ma/page/Eaux-de-surface
- Agoumi A. and Debbarh, A., 2005. Ressources en eau et bassins versants du Maroc: 50 ans de développement, Report Prepared Within the Framework of the "Water: Management of Scarcity" Organized by the Association of Moroccan Engineers of Bridges and Roads, Pp. 13-62.
- Albab, S., Ezaidi, A., Benssaou, M., and Kabbachi, B., 2013. Le patrimoine naturel géologique et oasien au service du développement géotouristique dans la province de Sidi Ifni et son arrière-pays oasien (Maroc), Collection EDYTEM. Cahiers de géographie, 14 (1), P p. 117-130. doi: 10.3406/edyte.2013.1229.
- ATTOU, M.B., 2014. La nouvelle stratégie de l'Etat dans l'espace présaharien, Guelmim à l'heure de la, régionalisation élargie, Revue AFN Maroc N, 15, Pp. 16.
- Bekkar, A., Hssina, B., Douzi, S., and Khadija, D., 2023. Transformer-Based Model for Multi-Horizon Forecasting Ozone in Marrakech city, Morocco. Pp. 8. doi: 10.1109/SITA60746.2023.10373756.
- BERGIER, P., 2009. Où voir les oiseaux dans le Sahara Atlantique marocain », Go-South Bulletin, 6, Pp. 1-71,
- Bhateria, R., and Jain, D., 2016. Water quality assessment of lake water: a review. Sustainable Water Resources Management, 2, Pp. 161-173.
- Bouaicha, R., and Benabdelfadel, A., 2010. Variabilité et gestion des eaux de surface au Maroc, Sécheresse, 21 (4), Pp. 325-326, oct. 2010, doi: 10.1684/sec.2010.0272.
- Boulal, M., Boulanouar, M., Ghamizi, M., and Boutin, C., 2017. Qualité de l'eau et faune aquatique des puits dans la région de Tiznit (Anti-Atlas occidental, Maroc) », Bulletin de la Société d'Histoire Naturelle de Toulouse, 153, Pp. 25-41.
- Brouyère, S., Glaude, R., Hutzemakers, J., Orban, P., and Goderniaux, P., 2022. Impact du changement climatique sur les ressources en eaux souterraines de Wallonie: des prédictions du passé aux observations du présent », in Journée d'étude. Eau potable: de la protection des ressources à la consommation, 2022.
- Chen, J., Zhang, H., Xue, J., Yuan, L., Yao, W., and Wu, H., 2022. Study on spatial distribution, potential sources and ecological risk of heavy metals in the surface water and sediments at Shanghai Port, China, Marine Pollution Bulletin, 181, Pp. 113923, août 2022. doi:

- 10.1016/j.marpolbul.2022.113923.
- Chouafa Nesrine, M.G.M., 2022. Analyse de la qualité de l'eau potable distribuée à Guelma.
- du Maroc, R., LES SOURCES D'EAU DANS LE BASSIN MEDITERRANEEN.
- El Arabi, S., 2021. L'accueil des migrants subsahariens à Tiznit: géographie et éthique de la villerefuge, LocalAcc Monographies, Monographies, 1.
- El Attaoui, Z., Sossi, F. Z. A., and El Khatori, Y., 2023. La gestion des risques menaçant la qualité de l'eau: application du PGSSE et la méthode HACCP, in SHS Web of Conferences, EDP Sciences, Pp. 01037.
- El Blidi, S., Fekhaoui, M., Serghini, A., and El Abidi, A., 2006. Rizières de la plaine du Gharb (Maroc): qualité des eaux superficielles et profondes, Bulletin de l'Institut Scientifique, Rabat, section Sciences de la Vie, 28, Pp. 55-60.
- Elassassi, Z., Ougrad, I., Bedoui, I., Kara, M., El Bouch, M., Assouguem, A., and Chaouch, A. (2022). Spatial and Temporal Variations of the Water Quality of the Tiflet River, Province of Khemisset, Morocco. Water, 14 (12), 1829. doi: 10.3390/w14121829.
- El-Moustaqim, K., Benchrifa, M., Mabrouki, J., and Hmouni, D., 2024. Interaction between the Microalgae Cultivation System and Its Effects on Nutrient Removal from Wastewater, Pp. 70-79. doi: 10.1201/9781003436218-8.
- El-Moustaqim, K., El Bakraoui, H., Mabrouki, J., Fouad, Y., Slaoui, M., Hmouni, D., and Igbigbi, T. L., 2023. Combination of Microalgae Method, Decantation, and Filtration for Domestic Wastewater Treatment. Sustainability, 15 (22). doi: 10.3390/su152216110.
- Gharbi, S., 1986 Le bassin-versant de ras el maa (maroc): etude hydrologique, These de doctorat, Toulouse 2, 1986. Consulté le: 29 janvier 2024. [En ligne]. Disponible sur: https://www.theses.fr/1986TOU20045
- Hem, J.D., Study and Interpretation of the Chemical Characteristics of Natural Water. U.S. Government Printing Office, 1959.
- HUMBERT, A., 2013. LES PALMERAIES DU PAYS DES ID BRAHIM ET DES AÏT HERBIL: UN ESPACE EN CRISE DU SUD-OUEST MAROCAIN (PROVINCE DE GUELMIM).
- Kijjanapanich, P., 2013. Sulfate reduction for remediation of gypsiferous soils and solid wastes, These de doctorat, Paris Est, 2013. Consulté le: 10 février 2024. [En ligne]. Disponible sur: https://www.theses.fr/2013PEST1188
- Kouassi, A.M., Mamadou, A., Ahoussi, K.E and Biemi, J., 2013. Simulation de la conductivité électrique des eaux souterraines en relation avec leurs propriétés géologiques: cas de la Côte d'Ivoire, Revue Ivoirienne des Sciences et Technologie, 21, Pp. 138-166.
- Lesley, M.N.Y.O., de Dieu, N.J., Félicien, L.M. R., Isidore, N. M., NSONA, M., Promesse, B. M. L. J. C., and Maurille, O. J., 2023. Utilisation des indices de qualité et de pollution organique dans l'évaluation de la qualité physicochimique des eaux de surface de la ville de Brazzaville (Congo), Géologie et ressources naturelles en Afrique centrale, impact sociétal et développement durable, Pp. 65.
- Lin, L., Li, C., Yang, W., Zhao, L., Liu, M., Li, Q., and Crittenden, J.C., 2020. Spatial variations and periodic changes in heavy metals in surface water and sediments of the Three Gorges Reservoir, China. Chemosphere, 240, 124837. doi: 10.1016/j.chemosphere.2019.124837.
- Mabrouki, J., Azoulay, K., Elfanssi, S., Bouhachlaf, L., Mousli, F., Azrour, M., & El Hajjaji, S., 2022. Smart System for Monitoring and Controlling of Agricultural Production by the IoT, in IoT and Smart Devices for Sustainable Environment, M. Azrour, A. Irshad, et R. Chaganti, Éd., in EAI/Springer Innovations in Communication and Computing, Cham: Springer International Publishing, Pp. 103-115. doi: 10.1007/978-3-030-90083-0_8.
- Mabrouki, J., Benchrifa, M., Ennouhi, M., Azoulay, K., Bencheikh, I., Rachiq, T., and El Hajjaji, S. 2023. Geographic Information System for the Study of Water Resources in Chaâba El Hamra, Mohammedia (Morocco) Pp. 469-474. doi: 10.1007/978-3-031-26254-8_67.
- Mabrouki, J., El Yadini, A., Bencheikh, I., Azoulay, K., Moufti, A., and El

- Hajjaji, S. 2019. Hydrogeological and Hydrochemical Study of Underground Waters of the Tablecloth in the Vicinity of the Controlled City Dump Mohammedia (Morocco), in Advanced Intelligent Systems for Sustainable Development (AI2SD'2018), vol. 913, M. Ezziyyani, Éd., in Advances in Intelligent Systems and Computing, 913, Cham: Springer International Publishing, Pp. 22-33. doi: 10.1007/978-3-030-11881-5 3.
- Mabrouki, J., Fattah, G., Al-Jadabi, N., Abrouki, Y., Dhiba, D., Azrour, M., and Hajjaji, S. E., 2022. Study, simulation and modulation of solar thermal domestic hot water production systems », Model. Earth Syst. Environ, 8 (2), Pp. 2853-2862, juin 2022, doi: 10.1007/s40808-021-01200-w.
- Mabrouki, J., Fattah, G., Kherraf, S., Abrouki, Y., Azrour, M., & El Hajjaji, S., 2022. Artificial intelligence system for intelligent monitoring and management of water treatment plants », Emerging Real-World Applications of Internet of Things, Pp. 69-87.
- Mahmouhi, N., El Wartiti, M., Astite, W. S., Kemmou, S., and El Bahi, S., 2016. The use of geographic information system for the extraction of physical characteristics of assaka watershed: sub-basins of sayed and oum laachar wadis (southern Morocco). International Journal of Innovation and Applied Studies, 16 (2), Pp. 370-377.,
- Mahmouhi, N.E., Wartiti, M.E., Wissem, S.A., Kemmou, S., and Bahi, S.E., 2016. Utilisation des systèmes d'information géographiques et des modèles hydrologiques pour l'extraction des caractéristiques physiques du bassin versant d'Assaka (Guelmim, sud du Maroc), 16 (2).
- Mekki, I., Ferchichi, I., Taoujouti, N., Faysse, N., and Zaïri, A. A., 2021. Analyse de l'extension des palmeraies oasiennes et de son impact sur les ressources en eau souterraine dans la région de Kébili, sud-ouest de la Tunisie, 2021.
- Mohammed P.B., and Anas, I.B., 2021. Analyse climatique et hydrologique du bassin de Draa et l'unité de Guelmim et proposition des mesures pour garantir la sécurité hydrique.
- Mondiale de la Santé, O., 2019. Stratégie de l'OMS sur l'eau, l'assainissement et l'hygiène 2018-2025, Organisation mondiale de la Santé.
- Moussa, A.B., Chahlaoui, A., Rour, E. H., Chahboune, M., and Aboulkacem, A., 2012 Étude Du Changement De L'etat Des Eaux De L'oued Khoumane A La Confluence Avec Les Eaux Thermales De La Source Ain Hamma Moulay Idriss Maroc, LARHYSS Journal P-ISSN 1112-3680 / E-ISSN 2521-9782, 11, Art. no 11. Consulté le: 28 janvier 2024. [En ligne]. Disponible sur: http://larhyss.net/ojs/index.php/larhyss/article/view /136
- Noureddine, N. A., Kharbach, O., Sabil, A., and Benichou, A., 2024. Vers une Économie Circulaire au Maroc: Défis, Stratégies et Perspectives. Revue Française d'Economie et de Gestion, 5 (1).

- Ouhamdouch, S., Bahir, M., and Carreira, P., 2018. Impact du changement climatique sur la ressource en eau en milieu semi-aride: exemple du bassin d'Essaouira (Maroc). rseau, 31 (1), Pp. 13-27. doi: 10.7202/1047050ar.
- Oumara N.G.A. and El-Youssfi L., 2022. Salinization of Soils and Aquifers in Morocco and the Alternatives of Response », Environmental Sciences Proceedings, 16 (1), Art. no 1. doi: 10.3390/environsciproc2022016065.
- Ouyang, Y., 2005. Evaluation of river water quality monitoring stations by principal component analysis, Water Research, 39 (12), Pp. 2621-2635, juill. 2005, doi: 10.1016/j.watres.2005.04.024.
- Ouzanni, H., Nafia, K., and Ghachi, M.E., 2023. Analyse du fonctionnement hydrologique de la source d'ASKKAR: suivi, mesure et analyse 2022-2023 (Bassin versant de l'Oued El Abid-Maroc-) », Revue Internationale de la Recherche Scientifique (Revue-IRS), 1 (5), Art. no 5, oct. 2023. doi: 10.5281/zenodo.8400908.
- Production d' eau potable Lenntech, 2024. Consulté le: 6 février, [En ligne]. Disponible sur: https://www.lenntech.fr/applications/potable/eau-potable.htm
- Quarouch H., Kuper M., Abdellaoui, E.H., and Bouarfa, S., 2014. Eaux souterraines, sources de dignité et ressources sociales: cas d'agriculteurs dans la plaine du Saïss au Maroc.
- Savean, M., 2014. Modélisation hydrologique distribuée et perception de la variabilité hydro-climatique par la population du bassin versant de la Dudh Koshi (Népal) », These de doctorat, Montpellier 2. Consulté le: 30 janvier 2024. [En ligne]. Disponible sur: https://www.theses.fr/2014MON20222
- SIREDD Guelmim-Oued Noun. Consulté le: 10 février 2024. [En ligne]. Disponible sur: https://siredd.environnement.gov.ma/Guelmim-Oued-Noun/SIG/SigIndex
- TALEB, R. B., Naimi, M., Chikhaoui, M., and Sabir, M., 2021. Utilisation de SWAT pour la modélisation hydrologique et l'évaluation du rendement des sédiments dans le bassin versant de Nakhla, Maroc », Revue Marocaine des Sciences Agronomiques et Vétérinaires, 9 (4), Pp. 616-628.
- Vecchio, K.D., and Kuper, M., 2022. La mise en visibilité des eaux souterraines au Maroc: un processus historiquement lié aux politiques de développement de l'irrigation, Développement durable et territoires. Économie, géographie, politique, droit, sociologie, 12 (3).
- Yehya, T., 2015. Etude des procédés electrochimiques et biologiques pour le traitement des eaux: application à l'élimination des nitrates et de la carbamazepine, These de doctorat, Clermont-Ferrand 2. Consulté le: 10 février 2024. [En ligne]. Disponible sur: https://www.theses.fr/2015CLF22660

