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The rapid expansion of date palm cultivation in Jordan presents significant challenges related to water 
management, particularly as the region faces increasing water scarcity. This study addresses the urgent need 
for precise estimation of crop water requirements by evaluating the actual daily evapotranspiration (ETa) of 
date palms. We employed the Analytical Atmospheric Land Radiation Measurement (ALARM) model and 
compared its performance with the Evapotranspiration Look (ETLook) model to determine their effectiveness 
in capturing the water needs of these crops. Utilizing six satellite images from Landsat 8 and 9, we conducted 
our analysis over a period from February 9 to May 15, 2024. The results indicated that the ALARM model 
produced ETa values ranging from 2.58 mm/day to 5.23 mm/day, with an average of approximately 4.23 
mm/day. In contrast, the ETLook model, which relies on data from the WaPOR portal and incorporates MODIS 
and PROBA-V satellite information, yielded significantly lower estimates, with values between 0.975 mm/day 
and a maximum of 2.125 mm/day This discrepancy suggests that the ETLook model may adopt a conservative 
approach, potentially underestimating the water requirements during critical growth phases, which could 
adversely impact crop health and yield. Furthermore, the average root mean square error (RMSE) between 
the two models was approximately 2.7 mm/day, indicating variability in their performance. The findings 
emphasize the ALARM model's superiority for detailed assessments in heterogeneous landscapes, making it 
particularly suitable for optimizing irrigation strategies tailored to the specific needs of date palms. 
Conversely, the ETLook model may be better suited for broader regional assessments, providing a more 
generalized view of water consumption. In conclusion, integrating both models can enhance water use 
efficiency and support sustainable agricultural practices in water-scarce environments. By improving our 
understanding of ETa dynamics in date palm cultivation, this study contributes valuable insights for effective 
water resource management and the long-term sustainability of agricultural systems in Jordan and similar 
arid regions 
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1. INTRODUCTION 

Sustainable water usage has become a critical issue in regions experiencing 
water scarcity, affecting agriculture and various other sectors (Sahoo and 
Goswami, 2024). The increasing demand for water, coupled with declining 
quality of surface and groundwater, has intensified competition among 
different sectors for limited resources (Sahoo and Goswami, 2024). 
Increasing world pollution, overuse of groundwater sources, utilizing 
water for diverse applications, and decreasing rainfall due to climate 
change led to water scarcity in regions with high rainfall as well as arid 
areas (Asadi and Karami, 2020; Chen et al., 2024). Water scarcity is defined 
not only by the availability of water for economic and social purposes but 
also by the requirements of both natural and man-made ecosystems 
(Acharya et al., 2021; Koebela and Simpson, 2023; Hamaideh et al., 2024). 
The notion of scarcity also encompasses water quality, as inadequate water 
resources are either inaccessible or of little value in both human and 
natural systems (Hamaideh et al., 2024). Furthermore, the concept of 
scarcity encompasses water quality; inadequate resources may be 

inaccessible or of little value to human and ecological systems. 
Consequently, effective measures are urgently needed to conserve natural 
resources, prevent waste, and maintain water quality (Hamaideh et al., 
2024). 

Irrigation, as one of the most significant uses of water globally, faces 
increasing pressure from various sectors, including agriculture, urban 
development, industry, and tourism (Hamaideh et al., 2024). This 
heightened competition for water resources is further intensified by 
climate change, which poses serious threats to vulnerable agricultural 
sectors (Slama et al., 2019). While irrigated agriculture is known to be the 
highest consumer of water worldwide and has faced criticism for 
generating waste and compromising water quality, it remains a vital sector 
that sustains the livelihoods of many rural populations and contributes 
substantially to global food production (Perry and Praskievicz, 2017; 
Slama et al., 2019). To address the multifaceted challenges posed by water 
scarcity, numerous studies have sought innovative water management 
strategies aimed at expanding water utilization and enhancing both crop 
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yields and farmers' incomes (Al Zayed et al., 2016; Atasever and Ozkan, 
2018).  
 
As the global population continues to grow, there is an urgent need to 
increase food production while protecting the environment. Modern 
agricultural practices must find ways to increase crop productivity (Al 
Zayed et al., 2016). Precision agriculture offers a promising solution by 
employing advanced technologies and methodologies for more effective 
land and crop management. This can improve production, protect the 
environment, and raise the quality of agricultural products. Precision 
agriculture is especially relevant in arid and semi-arid regions, where 
climate change and rising water salinity present serious challenges (Costa 
et al., 2019; Kalua et al., 2020). The most significant consumer of water in 
agriculture is cropland irrigation, making it crucial to develop reliable 
methods for measuring water consumption by crops to ensure sustainable 
management practices (Tan et al., 2018). Understanding the amount of 
water lost through evapotranspiration (ET) can provide insights into 
water demand and land productivity, establishing crop-specific 
relationships between ET and yield (Reints et al., 2020). Yield, as a critical 
indicator of crop response to water management, is vital for rural 
development and national food security. Therefore, quantifying ET at the 
field level is essential for maximizing land productivity while minimizing 
water losses (Reints et al., 2020). 
 
Jordan, located in the eastern Mediterranean and covering approximately 
90,000 km², faces significant challenges related to water scarcity. With a 
population of around 11 million, the country's diverse terrain includes 
features such as the Rift Valley, highlands reaching up to 1,600 meters 
above sea level, desert regions, and the Dead Sea, which sits at 426 meters 
below sea level in 2010 (Trottier et al., 2016; Ayasrah and Hanandeh, 
2024). The climate in Jordan varies significantly; the western regions 
experience a Mediterranean climate characterized by hot, dry summers 
and mild, wet winters, while the Jordan Rift Valley and Aqaba have 
subtropical climates with hot summers and warm winters (Trottier et al., 
2020; Jamrah et al., 2024). The favorable environmental conditions in the 
Jordan Valley and Aqaba have made date palm cultivation increasingly 
popular among farmers, as date palms require less irrigation than other 
crops and are well-suited to hot, saline soils (Hodgson, 2015; Al-Khayri and 
Naik, 2017; Bani Ataa et al., 2024). To achieve sustainable irrigation 
management, it is crucial to determine the crop water requirements of date 
palms through either ground-based or remotely sensed methods. The 
inadequate estimation of daily actual evapotranspiration (ETa) for date 
palm trees has led to inefficient irrigation practices and significant water 
loss in the region. 
 
Crop water demand is defined as the volume of water applied to an 
agricultural field to meet the needs of the crops' actual ETa (Ayyad et al., 
2019; Chakroun et al., 2023; Kumar and Hamouda, 2025). Accurate 
estimation of ETa is fundamental for agricultural water management, 
enabling effective water resource planning, allocation, and efficiency 
studies. Various field-based methods have been developed to measure ETa 
directly, including lysimeter systems and the eddy covariance method 
(Chakroun et al., 2023). However, these approaches often suffer from 
limitations related to localized measurement and the availability of 
meteorological data, particularly in remote areas. Ground and remote 
sensing methods are two approaches used to collect environmental 
information, so the ground methods involve physically going to a site and 
collecting data directly (Meza et al., 2025). This could include taking 
measurements with instruments, conducting surveys, or taking soil, water, 
or air samples (Chakroun et al., 2023). While these methods tend to be 
more accurate than remote sensing approaches, they can also be time-
consuming and costly (Chakroun et al., 2023). 
 
Remote sensing methods for estimating ET, such as Surface Energy Balance 
Algorithms for Land (SEBAL) (Elkatoury et al., 2024), Evapotranspiration 
Look (ETLOOK) (Bastiaanssen et al., 2012), Metric (Sejine and Anane, 
2024), and Analytical Land–Atmosphere Radiometer Model (ALARM) 
(Suleiman and Al-Bakri, 2011), offer alternative ways to gather 
environmental data over larger areas, though they may sacrifice some 
accuracy compared to ground-based techniques. These methods leverage 
satellite data to estimate ET and monitor water use in agricultural settings 
(Atasever and Ozkan, 2018). For instance, SEBAL utilizes satellite data to 
calculate surface energy fluxes, including ET, and has been widely adopted 
for monitoring irrigation efficiency and crop yield forecasting (Suleiman 
and Al-Bakri, 2011; Atasever and Ozkan, 2018). Additionally, SEBAL has 
been applied to estimate urban areas' water consumption and monitor the 
effects of land-use changes on the environment (Kumar and Hamouda, 
2025). SEBAL requires input data to estimate the surface energy balance 
components. The accuracy of SEBAL outputs depends on the input data's 
accuracy, so the data's quality must be carefully controlled (Costa et al., 

2019). Similarly, ALARM and ETLook employ atmospheric data and 
satellite imagery to estimate ET, providing crucial insights for water 
management across extensive regions (Bastiaanssen et al., 2012; Owaneh 
and Suleiman, 2018). ALARM is remote sensing method that estimates 
surface energy fluxes using atmospheric data, employing energy 
equilibrium algorithms to derive instantaneous and daily ET values based 
on physical and experimental relationships using satellite imagery and 
low-ground observational data ( Suleiman and Crago, 2002; Owaneh and 
Suleiman, 2018). To estimate ET using ALARM, remotely sensed vegetation 
index and canopy temperature and weather parameters such as surface 
temperature, net radiations, soil heat flux, and sensible heat flux. Finally, 
calculations are made for the instantaneous flux and the amount of daily 
ET (Bastiaanssen et al., 2012).  
 
Similarly, ETLook estimates ET using satellite data and weather 
information, making it a valuable tool for monitoring water use and 
drought conditions across large regions. ETLook is commonly used to 
monitor water use in agricultural areas and assess drought conditions 
(Suleiman and Al-Bakri, 2011). Using remote sensing data, the ETLook 
algorithm is a computational method used to estimate ET over large 
regions. It utilizes data from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) sensor, which captures visible and near-
infrared light, and the Advanced Microwave Scanning Radiometer for 
Earth Observing System (AMSR-E) sensor, which provides soil moisture 
estimates (Bastiaanssen et al., 2012). The ETLook algorithm solves the 
Penman-Monteith equation separately for soil and vegetation, which 
allows for the partitioning of ET into transpiration and evaporation 
(Pelgrum et al., 2012). To estimate ET, the algorithm considers various 
environmental factors such as solar radiation, air temperature, wind 
speed, and relative humidity. It can provide estimates of ET daily or 
weekly, and it has been used in various regions worldwide, including 
Australia, China, and the Indus basin (Pelgrum et al., 2012). The ETLook 
algorithm has several advantages over other methods for estimating ET, 
including its ability to work with low-resolution soil moisture data and its 
scalability over large areas. It is useful for various applications, including 
water management, drought monitoring, and crop yield forecasting 
(Bastiaanssen et al., 2012). 
 
In this study, the daily ETa of date palm trees was estimated using the 
ETLook and ALARM algorithms, with results compared against the water 
balance method. The increasing adoption of these algorithms reflects their 
capability to estimate ET rates independently of soil conditions, crop types, 
and management practices. The main objectives of this research are to 
provide a cost-effective and time-efficient means of determining the 
precise water requirements of date palms, minimize water wastage, and 
enhance irrigation efficiency. Furthermore, the study aims to address the 
lack of awareness regarding crop water needs, which has led to inadequate 
irrigation management practices among farmers, resulting in significant 
water loss and additional pressure on both surface and groundwater 
resources in the region. While previous studies have successfully utilized 
the ALARM model to estimate ET for crops such as potatoes and alfalfa in 
the Jordan Valley, research specifically addressing ET for date palms 
remains limited. This study seeks to fill this knowledge gap by delivering a 
robust analysis of the daily water requirements for date palms through 
remote sensing data, providing an improved approach to crop water 
estimation compared to traditional point measurements. By evaluating the 
performance of the ETLook and ALARM algorithms against the widely 
accepted water balance equation and incorporating comparisons of 
ground weather data with NASA Power data, this research endeavors to 
contribute valuable insights into the potential of remote sensing in 
agricultural water management. Ultimately, the findings hold significant 
implications for promoting efficient and sustainable water management 
practices within the context of Jordan's pressing water scarcity challenges. 
 

2. MATERIALS AND METHODS 
 
The methodology employed in this study involved estimating the actual 
daily crop water requirements for date palm trees using the ETLook and 
ALARM models. Remote sensing data were acquired from the Landsat 8 
satellite, which provides regular imagery of the study area. These images 
were utilized to derive key metrics, including surface canopy temperature 
and the vegetation leaf area index (LAI) of the date palms. Additionally, 
meteorological data—such as air temperature, humidity, wind speed, and 
solar radiation—were sourced from a nearby weather station and NASA's 
power data. The ALARM model was specifically applied to estimate the ETa 
for the date crops, utilizing an energy balance equation that calculates ETa 
based on the energy inputs and outputs at the land surface. 
 
2.1. Study Area 
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The Jordan Valley is one of the oldest and most significant agricultural 
centers in Jordan (Dhehibi et al., 2017). This study was conducted at the 
AL-Quafil Farms, located in the central Jordan Valley at a latitude of 32° 
5’5” N and a longitude of 35° 35’51” E, at an altitude of 230 meters below 
mean sea level. The site was specifically chosen within a field of date palm 
trees, as this location is recognized for its agricultural prosperity and 
extensive, well-defined farmlands, making it a principal agricultural hub in 
Jordan. The selected farm operates under the supervision of the Al-Quafil 
Agricultural Research Center, which ensures effective irrigation 
management and maintains optimal soil conditions for plant growth. 
The farm covers an area of 65 dunams, with approximately 1,080 date 
palm trees irrigated via a drip system. The palm trees are around 7 to 8 
years old and have an average height of 5.25 meters, with a spacing of 8 
meters between each tree, resulting in a density of about 150 trees per 
hectare. For this study, a total area of 40 dunams planted with Medjoul date 
palms was utilized, divided into four pixels, as illustrated in Figure 1, with 
each pixel measuring 100 by 100 meters. These pixels were further 
subdivided into sub-pixels measuring 30 by 30 meters. The analysis 
focused on the sub-pixels labeled P1, P2, P3, and P4, in accordance with the 
resolution of Landsat 8 imagery. 
 

 
 

Figure 1: Location map of study area. 
 
2.2 Meteorological Data 
 
Meteorological data for the study period were collected from the Dair Alla 
Meteorological Station and NASA Power Station. The recorded parameters 
included average daily solar radiation (MJ/m² per day), wind speed (m/s), 
maximum and minimum daily air temperatures (°C), and average, 
maximum, and minimum relative humidity (%). These values were utilized 
to calculate ETa. Additionally, specific weather parameters—hourly air 
temperature, wind speed, and solar radiation—were recorded during the 
satellite overpass, which are essential for the ALARM model. Daily net solar 
radiation was also necessary for converting instantaneous ETa into daily 
ETa. 
 
2.3 Satellite Images 
 
This study utilized six Landsat 8 and 9 images to monitor the growth 
period of date trees, spanning from February 9 to May 15, 2024. The 
inclusion of Landsat 9 images was necessary due to the unavailability of 
Landsat 8 images for every 8-day interval during this period. The 
specifications of the satellite images used are detailed in Table 1. These 
images were crucial for estimating the ETa of the date trees within the 
study area. 

Table 1: Landsat images used during the study period. 

N
o 

ID 
Date 

Acquir
ed 

Time 
of 

overp
ass 

Clo
ud 

Cov
er 
% 

1 
LC08_L1TP_174038_20240209_202

40213_02_T1 

Februa
ry 9, 
2024 

08:10:
56 

10.3
7 

2 
LC08_L1TP_174038_20240312_202

40401_02_T1 

March 
17, 

2024 

08:10:
41 

0.43 

Table 1(Cont.): Landsat images used during the study period. 

3 
LC08_L1TP_174038_20240328_202

40410_02_T1 

March 
28, 

2024 

08:10:
25 

1.80 

4 
LC09_L1TP_174038_20240405_202

40405_02_T1 

April 
5, 

2024 

08:10:
50 

0.17 

5 
LC09_L1TP_174038_20240421_202

40421_02_T1 

April 
21, 

2024 

08:10:
33 

5.78 

6 
LC08_L1TP_174038_20240515_202

40521_02_T1 

May 
15, 

2024 

08:09:
57 

2.96 

All images utilized in this study were downloaded from 
https://earthexplorer.usgs.gov and are free from geometric errors, with a 
cloud cover percentage of less than 10%. The six high-resolution remote 
sensing images from the Landsat 8 and Landsat 9 satellites were processed 
to determine land surface temperature (LST), surface albedo, and estimate 
LAI. Landsat 8 captures data across 11 spectral bands using two distinct 
sensors: The Operational Land Imager (OLI) and the Thermal Infrared 
Sensor (TIRS). The OLI includes multispectral bands 1-7 and 9, operating 
at a spatial resolution of 30 meters. Additionally, the panchromatic band 8 
operates at a higher resolution of 15 meters. TIRS bands 10 and 11 are 
initially collected at 100 meters but are resampled to 30 meters to align 
with the OLI multispectral bands during Level-1 product generation. The 
approximate scene size is 170 km north-south by 183 km east-west. The 
instruments on Landsat 9 are advanced versions of those found on Landsat 
8. In this step, the satellite images provided critical information essential 
for estimating ETa using the ALARM model. Remote sensing software, 
including Arc/Info and ArcView GIS 10.8, was employed to process the 
satellite images and estimate the parameters required for the ALARM 
model. 
 
2.4. Remote Sensing Data Collection 
 
In this study, a series of satellite data from Landsat 8 and Landsat 9 was 
utilized, specifically from path 174 and row 38. The images, generated in 
2024, were obtained from the United States Geological Survey (USGS) 
through their platform, http://earthexplorer.usgs.gov/. The Landsat 8 and 
9 overpasses occurred at approximately 11:10 AM local time, featuring a 
spatial resolution of 30 meters and a spectral resolution of 12 bits. 
Although the data are available in 16 bits, allowing for pixel intensity 
values ranging from 0 to 65,535 gray levels, the 12-bit resolution enhances 
the detail of the information generated. Throughout the study period from 
February to May 2024, a total of six images were collected, with a 
combined revisit time of 8 days for the Landsat 8 and 9 satellites. Table 1 
summarizes the key characteristics of these datasets. 
 
2.4.1 Estimated Land Surface Temperature (LST) 
 
The USGS provides the Top of Atmosphere Brightness Temperature (BT), 
which is calculated from Top of Atmosphere (TOA) radiance and two 
thermal constants, as detailed on https://landsat.usgs.gov/using-usgs-
landsat-8-product. The TOA radiance is captured by the TIRS, which 
operates using two spectral bands: Band 10 and Band 11. However, the 
USGS advises users to avoid relying on Band 11 data for quantitative 
analyses due to significant calibration uncertainties associated with this 
band. To calculate the LST from Landsat 8 and 9 satellite images, three 
bands are utilized: the fourth band (Red, with a wavelength of 0.64–0.67 
micrometers), the fifth band (Near Infrared (NIR) with a wavelength of 
0.85–0.88 micrometers), and the tenth band (TIRS1, with a wavelength 
range of 10.60–11.19 micrometers).  In this study, data from Landsat 8 and 
9 were accessed through the Earth Explorer website. The TIR Band 10 was 
utilized to estimate BT, while Bands 4 and 5 were employed to calculate 
the Normalized Difference Vegetation Index (NDVI). A total of six images 
from the Landsat 8 and 9 satellites were processed, with details of these 
images and the spectral bands used presented in Table 1. The estimation 
of LST involves several steps, utilizing thermal bands of Landsat 8 and 9. 
This process involves applying a series of equations via a raster image 
calculator, such as ArcMap or ArcGIS. The methodology is summarized as 
follows: 

a. Calculation of Top of Atmosphere (TOA) Spectral Radiance 

 The TOA spectral radiance is calculated using the equation (Allen et al., 
2002): 
 



Water Conservation & Management (WCM) 9(1) (2025) 93-104 

 

 
Cite The Article: Shadia Alqudaha, Ayman Suleimana, Motasem Y.D. Alazaizab, Heba Al -Jawaldeha (2025). Evaluating Crop Water 

Requirements: A Case Study Of Date Palms In Water-Scarce Jordan. Water Conservation & Management, 9(1): 93-104. 

TOA (L) = ML * Qcal + AL                                                                            (1) 
 
Where ML = band-specific multiplicative rescaling factor from the 
metadata, Qcal = corresponds to band 10, and AL = band-specific additive 
rescaling factor from the metadata. 
 
 The specific equation for TOA can also be represented as (Allen et al., 
2002): 
 
TOA = 0.0003342 * B10 + 0.1                                                                             (2) 
 
The equation must be solved using the Raster Calculator tool in ArcMap. 
 
b. Conversion of Radiance to Brightness Temperature (BT) 
 
The TIRS band (B10) data should be converted from spectral radiance to 
BT using the thermal constants provided in the metadata (Allen et al., 
2002): 
 

𝐵𝑇 = [
𝐾2

ln(
𝐾1

𝐿
)
+ 1] − 273.15                                                                                         (3) 

  
Where 𝐾1 and 𝐾2 = band-specific thermal conversion constants from the 
metadata, and L= TOA. 
 
c. Calculation of Normalized Difference Vegetation Index (NDVI)    
 
The NDVI is calculated using the NIR and RED band images according to 
the equation (Allen et al., 2002): 
 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
                                                                                                 (4) 

 
Where NIR = reflectance of band 5, and RED = reflectance of band 4.  
 
d. Calculation of Proportion of Vegetation (Pv) 
 
 The Pv is calculated according to (Allen et al., 2002): 
 

𝑃𝑣 = (
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼min

NDVImax−NDVImin
)
2

                                                       (5) 

 
The minimum and maximum values of the NDVI image can be obtained 
from ArcGIS. 
 
e. Calculation of Land Surface Emissivity (ε) 
 
The ε is calculated as follows (Allen et al., 2002): 
 
ε = 0.004 * Pv + 0.986                                                                             (6) 
                                                                                           
The value of 0.986 corresponds to a correction factor of the equation. 
 
f. Calculation of Land Surface Temperature (LST) 
 
Finally, the LST is calculated using the equation (Allen et al., 2002): 
 

𝐿𝑆𝑇 =
𝐵𝑇

[1+(0.00115∗
𝐵𝑇

1.4388
)∗ln(𝜀)]

                                                                                       (7) 

 
By following these steps, the surface temperature map can be obtained, 
providing valuable information for the study's objectives. 
 
2.4.2 Estimated Leaf Area Index (LAI) 
 
The research the LAI can be estimated in the SEBAL model as a function of 
the Soil-Adjusted Vegetation Index (SAVI) (Bastiaanssen et al., 1998). An 
empirical relationship developed by Bastiaanssen et al. (1998) describes 
this relationship as follows: 
 
𝑆𝐴𝑉𝐼 = 0.69 − 0.59𝑒−0.091∗𝐿𝐴𝐼                                                                            (8) 
 
LAI represents the cumulative area of leaves per unit area of land at nadir 
orientation, providing a measure of vegetation density. 
 
In the ALARM model, the method for estimating LAI is not explicitly 

defined. Therefore, LAI estimation in ALARM was conducted using 

Equation 8. The SAVI is calculated from Landsat 8 and 9 satellite images 

using the NIR and Red bands and is given by the formula (Bastiaanssen et 

al., 1998): 

𝑆𝐴𝑉𝐼 =
(1+𝐿)∗(𝑁𝐼𝑅−𝑅𝐸𝐷)

(𝐿+(𝑁𝐼𝑅+𝑅𝐸𝐷))
                                                                            (9)                                                                                           

In this equation, L is the soil background correction factor, which varies 
between 0 and 1 depending on vegetation density. For this study, a value 
of L = 0.5 was assumed, as it has been shown to perform well under various 
vegetation conditions (Owaneh and Suleiman, 2018). By applying these 
equations, the LAI can be effectively estimated, contributing to the 
understanding of vegetation dynamics in the studied area. 
 
2.4.3 Estimated Surface Albedo (α)  
 
Surface albedo (α) is defined as the hemispherical surface reflectance of 
shortwave radiation across wavelengths of 0.3 to 3 μm. This dimensionless 
value ranges from zero to 1.0 and varies based on land cover type. 
Estimating α from Landsat 8 and 9 imageries typically requires starting 
from surface reflectance rather than digital numbers (dns). The input for 
albedo calculation must be a Landsat image that has been converted from 
DNs to TOA reflectance. Detailed formulas and explanations for this 
process can be found on the USGS site regarding the use of Landsat 8 
products (Bastiaanssen et al., 1998). Surface reflectance is given by 
atmospheric correction procedures applied to the original land-sat images. 
We used the Yale method for estimating the albedo layer of the study area 
(see: Yale University Center for Earth Observation), 
https://yceo.yale.edu/how-convert-landsat-dns-albedo. The estimation 
method comes from the work of Liang et al. (2001) and the Yale Guide to 
Landsat 8 Image Processing at "Yale University/Understanding Landsat 8," 
https://surfaceheat.sites.yale.edu/understanding-landsat-8). 
 
The estimation method is based on the work of who developed a series of 
algorithms for calculating albedo from various satellite images (Liang et al., 
2001). The formula for converting Landsat 8 and 9 bands to albedo, as 
normalized by (Smith,  2010), is given by: 
 

𝛼 =
(0.356∗𝐵2)+(0.130∗𝐵4)+(0.373∗𝐵5)+(0.058∗𝐵6)+(0.072∗𝐵7)−0.0018

1.016
                          (10) 

 
In this equation, B represents the Landsat bands 2, 4, 5, 6, and 7, with the 
note that Landsat band 3 (green) is not used in this calculation. This 
formula allows for the accurate estimation of surface albedo, contributing 
to the understanding of land surface properties in the study area. 
 

3. Evapotranspiration (ET) Estimation Methods 
 
3.1 Estimation Using the ALARM Model  
 
To estimate ET using the ALARM model, we first identify the necessary 
mathematical relationships, including LAI, Ɛ, α, LST, net radiation (Rn), soil 
heat flux (G), sensible heat flux (H), and latent heat flux (Eλ). These 
parameters are crucial for calculating both instantaneous and daily ET. The 
method relies heavily on the energy balance between processes occurring 
at the Earth's surface and the atmosphere, known as the surface energy 
balance. This approach derives the latent heat flux, which is essential for 
estimating the daily ETa value through the energy balance equation, 
represented as (Bastiaanssen et al., 1998): 
 
Eλ = (Rn – G – H)                                                                                              (11) 
 
In this equation, Rn denotes net radiation (W/m²), G represents soil heat 
flux (W/m²), and H is the sensible heat flux (W/m²). The latent heat flux Eλ 
corresponds to the ET in terms of energy (W/m²). The Rn is calculated as 
the difference between incoming and outgoing radiation, expressed by the 
formula (Bastiaanssen et al., 1998): 
  
𝑅𝑛 = 𝑅𝑆↓ − 𝛼𝑅𝑆↓ + (1 − 𝜀) ∗ 𝑅𝐿↓                                                     (12) 
 
Here, RS↓ is the incoming shortwave radiation (W/m²), RL↓ is the incoming 
long wave radiation (W/m²), α is the surface albedo, and ε is the surface 
emissivity. (For further information, have a look at (Allen et al., 2013). For 
soil heat flux G, this study employs equations developed by Bastiaanssen 
et al. (1998): 
 
𝐺: 𝑅𝑛 = (𝑇𝑠 − 273.15)(0.0038 + 0.0074𝛼)(1 − 0.98 ∗ 𝑁𝐷𝑉𝐼4             (13) 
 
Where Ts is the surface temperature in Kelvin. 
 
To estimate ET using ALARM, the model converts surface canopy 
temperature (Ts) obtained from satellite data into aerodynamic 
temperature (Ti). This conversion corrects for the vegetation temperature 
profile, taking into account factors like LAI, canopy height, fractional cover, 
and leaf angle distribution. The aerodynamic temperature is then used to 
calculate heat flux based on Monin-Obukhov similarity theory (MOS). ET is 

https://surfaceheat.sites.yale.edu/understanding-landsat-8
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computed as a residual from the energy balance. ALARM uses different 
approaches to estimate H based on MOS, represented by the equation 
(Bastiaanssen, 2000): 
 

𝐻 =
(𝑇𝑠−𝑇𝛼)∗𝐾𝑢∗𝜌∗𝐶𝜌

{ln(
𝑍𝑎−𝑑𝑜

𝑍𝑜ℎ
)−𝜓(

𝑍𝑎−𝑑𝑜

𝐿
)}

                                                                          (14) 

 
In this equation, Ta is the air temperature at height za in the surface sub 
layer, k is von Karman’s constant (approximately 0.4), u* denotes friction 
velocity, ρ is air density, Cp is specific heat at constant pressure, z0h is the 
scalar roughness length for sensible heat, d0 is the displacement height, L 
is Obukhov length, and ψ is a stability correction function. Using Ts directly 
to estimate H is ineffective because the radiometric surface temperature 
estimated from satellite images differs from the aerodynamic temperature 
(Ti) needed for accurate calculations. ALARM addresses this by predicting 
Ti through corrections based on vegetation characteristics. To convert Ts 
to Ti, ALARM utilizes a rearranged form of the equation proposed by 
(Brutsaert and Sugita 1996): 
 

𝑇𝑠 − 𝑇𝑎 =
𝐻

𝐾𝑢∗𝜌∗𝐶𝜌
⌊ln (

𝑧𝑎−𝑑𝑜

𝑧𝑜ℎ
) − 𝜓𝛼⌋                                                     (15) 

 
In the study enhanced the ALARM model by introducing a dimensionless 
temperature dT (Suleiman and Crago, 2002). They defined the 
dimensionless temperature as (Ti – Ta)/(Tmax – Ta), where Ti is the 
aerodynamic temperature, Ta is the air temperature, and Tmax is the 
maximum surface temperature that would occur if all available energy (Rn 
− G) transformed into sensible H without any evaporation. Tmax is 
obtained by solving the previous equation for Ts, assuming H equals (Rn - 
G). Within ALARM, the relationship between H and dT is assumed to be 
linear (Brutsaert and Sugita, 1996): 
 
H = (Rn - G) * dT                                                                                              (16) 
 
Based on equations (11) and (14), when (Ti - Ta) equals zero, dT will also 
be zero, resulting in H from equation (16) being zero. Conversely, when 
(Ti-Ta) equals (Tmax-Ta), dT equals one, leading H to equal (Rn-G). Using 
this assumption, ALARM estimates E in terms of dT (Brutsaert and Sugita, 
1996): 
 
E = (Rn - G)(1 - dT)                                                                                               (17) 
 
For further details on ALARM and the dimensionless temperature, refer to 
the works of (Suleiman and Crago 2004; Suleiman and Al-Bakri, 2011; 
Owaneh and Suleiman, 2018). This study utilized six satellite images from 
Landsat 8 and 9, which revisit the same area every 16 days, to estimate ET 
using the ALARM model. The images were captured on the following dates: 
February 9, March 12, March 28, April 5, April 21, and May 15, 2024. From 
these images, key parameters such as α, NDVI, LAI, SAVI, LST, view angle 
(z), and time of satellite overpass (t) were either estimated or collected. 
Landsat 8 and 9 each feature 11 bands, with Band 10 being the thermal 
band used to estimate Ts. The multispectral bands (2, 3, 4, 5, 6, and 7) were 
employed to calculate NDVI, α, and LAI. The view angles and times of 
satellite overpass are documented in the metadata files accompanying 
each image. Additionally, canopy height—a crucial input for the ALARM 
model—was measured in the field on the same dates the images were 
captured. Figure 2 and Table 2 provide details on the number of days for 
which LST was available during the study period for the various pixels 
analyzed. 
 

 
 

Figure 2: The minimum and maximum values of LST for the six image 
dates (Alqudah et al., 2024) 

Table 2: Average estimated LST, LAI, NDVI, and α value for the six 
image dates. 

NO Date LST (℃) LAI NDVI SAVI α 

1 9- FEB 18.17 0.502 0.211 0.316 0.166 

2 12-MAR 25.21 0.583 0.228 0.342 0.189 

3 28-MAR 28.85 0.718 0.254 0.382 0.221 

4 5- APR 31.25 0.851 0.273 0.41 0.23 

5 21- APR 31.77 0.767 0.263 0.395 0.237 

6 15-MAY 36.24 0.645 0.241 0.361 0.237 

Average 28.582 0.678 0.245 0.368 0.213 

The highest LST was recorded on May 15, 2024, with values of 37.35°C, 

36.20°C, 35.87°C, and 35.01°C for the pixels P1, P2, P3, and P4, respectively. 

This peak corresponds to the warmest period in the study area. 

Conversely, the lowest temperatures were observed on February 9, 2024, 

with readings of 18.28°C, 18.32°C, 17.97°C, and 18.12°C in the same pixels, 

reflecting typical winter conditions. Figure 1 illustrates the minimum and 

maximum LST values throughout the study area based on Landsat 8 and 9 

imageries collected on the specified dates. The measured albedo values 

ranged from 0.166 to 0.237, with an average of 0.22. The LAI values for the 

study area ranged from 0.502 to 0.851, averaging 0.678. To evaluate 

variability within the study area, LAI, NDVI, and SAVI were calculated for 

four pixels. The results, presented in Table 2, indicate significant variability 

in these indices, suggesting differences in soil conditions and crop 

management practices across the field.  

 
3.2 Estimation Using the ETLook Model 
 
The ETLook model estimates ETa by solving the P-M equation separately 

for vegetation and soil, allowing for the differentiation between 

transpiration (T) and evaporation (E). The equations for T and E are as 

follows (Bastiaanssen et al., 2012): 

 

T =
∆(𝑄𝑐𝑎𝑛𝑎𝑝𝑦

∗ )+𝜌𝐶𝜌
∆𝑒

ɣ𝑎,𝑐𝑎𝑛𝑎𝑝𝑦

∆+ɣ(1+
ɣ𝑐𝑎𝑛𝑎𝑝𝑦

ɣ𝑎,𝑐𝑎𝑛𝑎𝑝𝑦
)

                                                                                             (18) 

𝐸 =
∆(𝑄𝑠𝑜𝑖𝑙

∗ −𝐺)+𝜌𝐶𝜌
∆𝑒

ɣ𝑎,𝑠𝑜𝑖𝑙

∆+ɣ(1+
ɣ𝑠𝑜𝑖𝑙
ɣ𝑎,𝑠𝑜𝑖𝑙

)
                                                                                                    (19) 

Where Δe = slope of the saturation vapor pressure curve (mbar/K), Δ= 

vapor pressure deficit (mbar), ρ = air density (kg/m), Cp= specific heat of 

dry air (J/kg* K), ɣ= psychrometric constant (mbar/K), G= soil heat flux 

(W/m), Q*canopy and Q*soil (W/m) = net radiation for canopy and soil, 

respectively, rcanopy and rsoil (s/m) = canopy and soil resistance, 

respectively; ra, canopy and ra, soil (s/m) = aerodynamic resistance for 

canopy and soil, respectively. 

 
The ETLook model is implemented within the FAO Water Productivity 
(WaPOR) database, which serves as a portal for monitoring water 
productivity through open access to remotely sensed data. WaPOR 
provides access to a comprehensive water productivity database, allowing 
users to perform direct data queries, time series analyses, area statistics, 
and download key variables related to water and land productivity 
assessments. WaPOR datasets are accessible through dedicated FAO 
WaPOR APIs, which are being gradually published and documented. The 
database covers a period from 2009 to 2023 and is available at different 
spatial resolutions: continental scale (Level 1 at 250 m), country scale 
(Level 2 at 100 m), and project level (Level 3 at 30 m). The most recent 
version of WaPOR is WaPOR v3, and the methodology for compiling Eta 
data is based on the ETLook method as described by (Bastiaanssen et al., 
2012). In this study, the finest resolution of WaPOR data utilized is 100 m 
(Level 2). The relevant datasets include layers for actual evaporation (E), 
transpiration (T), and actual evapotranspiration and interception (ETIa) at 
a decadal timescale (approximately every 10 days). ETIa represents the 
sum of soil evaporation (E), canopy transpiration (T), and interception 
(I)—the evaporation from rainfall intercepted by leaves. Each pixel value 
corresponds to the average daily ETIa during a given dekad. An overview 
of the WaPOR data used in the analyses is presented in Table 3. 
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Table 3: The WaPOR layers used for the analyses. 

WaPOR data Layer 
Spatial 

Resolution 
Temporal Resolution 

Evaporation (E) in 
mm/day 

100 m 
Dekadally (approximately 

every 10 days) 

Transpiration (T) in 
mm/day 

100 m 
Dekadally (approximately 

every 10 days) 

ETa and 
Interception 

(Dekadal) 
100 m 

Dekadally (approximately 
every 10 days) 

The calculation of ETIa is based on the ETLook model described in 
Bastiaanssen et. al. (Bastiaanssen et al., 2012), with base input layers, 
including NDVI and albedo, derived from the Proba-V satellite. 
 
3.3 Validation of ET Estimates 
 
To validate the different ET results obtained in this study, various 
statistical parameters w ere employed, including mean, range, 
coefficient of variation, standard deviation, and root mean square error 
(RMSE). The details of these statistical methods can be found in any 
standard statistics book. The ETa produced by Landsat 8/9 using the 
ALARM model was compared with estimates derived from the ETLook 
model, enabling a comprehensive evaluation of both methods. The 
validation process involved calculating RMSE between the ALARM and 
ETLook methods. Microsoft Excel 2010 was utilized for all statistical 
analyses and data chart generation. The primary objectives of the 
statistical analyses included testing the performance of the ALARM model, 
and evaluating the accuracy of the ETLook model. These analyses provide 
a thorough assessment of the accuracy and reliability of the various ET 
estimation methods applied in this study, highlighting the strengths and 
weaknesses of both the ALARM and ETLook models in estimating ETa for 
date palm cultivation. 
 

4. RESULTS AND DISCUSSIONS 
 
4.1 Estimated Dairy ETa by ALARM Model 
 
Figure 3 illustrates the temporal dynamics of estimated ETa values derived 
from the ALARM model for four distinct pixels (p1, p2, p3, and p4) within 
the study area over the period spanning from February 9 to May 15. 
 

 
 

Figure 3: ALARM ETa values for four pixels. 
 

As shown in Figure 3, the data reveals a clear and consistent upward trend 
in ETa across all four pixels throughout the monitored timeframe. Starting 
from relatively lower values in early February, the ETa estimates steadily 
increased, reaching their peak levels by mid-May. This consistent increase 
in ETa aligns with the progression of the growing season for the date 
palms, as the plants' water consumption requirements climbed in tandem 
with their growth and development. This behavior could be mainly 
attributed to the temporal variations of LST in the study area (Figure 4), 
where the curve of LST had the same trend. 
 
While the overall temporal trajectory was analogous for the four pixels, 

there were noticeable differences in the absolute ETa magnitudes recorded 

for each individual location. The four pixels can be broadly categorized into 

two groups: p1 and p2 exhibited relatively lower ETa values compared to 

the higher estimates observed for p3 and p4. This spatial heterogeneity in 

ETa suggests that there are localized factors within the study area, such as 

soil characteristics, microclimate, or management practices, that are 

influencing the evapotranspiration dynamics in a differentiated manner 

across the monitored locations. 

 
The range of estimated daily ETa values spanned from around 2.5–3 
mm/day in early February to 5-5.5 mm/day by mid-May, underscoring the 
significant increase in water consumption by the date palms as the growing 
season progressed. Figure 4 provided offers valuable insights into the 
temporal variations in LST within the study area, as estimated from 
Landsat satellite imagery over the monitoring period from January 29 to 
May 28. 
 

 
 

Figure 4: Variations of LST estimated from Landsat images at  
the study area. 

 
The data presented in Figure 4 reveals a clear and pronounced upward 
trend in LST values throughout the study period. The surface temperature 
in the study area steadily increased as the growing season progressed, 
rising from around 15°C in late January/early February to nearly 35°C by 
the end of May—a substantial increase of approximately 20°C. This 
substantial warming of the land surface over the five-month timeframe 
reflects the significant seasonal changes in the climatic conditions of the 
study region. 
 
While the overall trend is decidedly upward, the LST values do exhibit 
some fluctuations from one observation date to the next. For instance, 
there are more pronounced increases in LST between the January 29 and 
February 18 measurements, as well as between the March 9 and March 23 
data points, followed by relatively smaller changes in the subsequent 
periods. These short-term fluctuations suggest that in addition to the 
broader seasonal patterns, other dynamic factors, such as weather 
patterns or localized meteorological conditions, are influencing the surface 
temperature within the study area over shorter timescales. The sensitivity 
of LST to the seasonal progression is particularly noteworthy, as the 
temperature rises in close alignment with the advancing growing season. 
This strong correlation between LST and the seasonal cycle is an important 
consideration when analyzing the ET dynamics of the date palm crop, as 
presented in Figure 3. The increasing surface temperatures likely play a 
significant role in driving the observed upward trend in estimated ETa 
over the course of the monitoring period.  
 
The estimated daily ETa of date trees from the ALARM model ranged from 
2.58 mm/day on February 9 to 5.23 mm/day on May 15 (Figure 3). The 
increasing surface temperatures, as shown in Figure 6, likely drive the 
observed upward trend in estimated evapotranspiration, underscoring the 
significance of understanding the interrelationships between climatic 
factors and crop water consumption patterns for effective water 
management strategies in date palm cultivation. For crop ET estimation, 
the growing season is divided into four stages: initial, development, mid, 
and late stages. For vegetables, the initial stage starts at planting and ends 
when the ground cover is around 10%; the development stage begins 
immediately after the initial stage and continues until the ground cover 
reaches around 85–90%. The date trees were in mid-stage during the study 
period. During the mid-stage, the Palm Date Kc value is 0.95.  
 
Daily ETa was estimated from Landsat image data for four pixels in the 
study area. The mean daily ALARM ETa estimates were 2.58, 3.66, 4.32, 
4.65, 4.94, and 5.23 mm/day on February 9, March 12, March 28, April 5, 
April 21, and May 15, respectively (Figure 3). Generally, it was noticed that 
the estimates were higher than ALARM ETa values. The detailed 
comparisons at specific dates provide further insights. On February 9, the 
ALARM ETa was 2.582 mm/day. On March 12, the ALARM ETa was 3.657 
mm/day. Similar discrepancies are observed across the other observation 
dates, reinforcing the tendency of the ALARM model to underestimate the 
crop's water consumption requirements. To assess the ALARM ETa 
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variations within the study area, the LAI and LST were computed from the satellite images for four pixels, as shown in Tables 4. 

Table 4: Summary statistics of LAI, LST, and ALARM ETa values estimated by Landsat images for different pixels. 

 

Pixel ID. 

LAI LST ALARM ETa 

Min Max Mean Σ Min Max Mean σ Min Max Mean σ 

P1 0.54 0.68 0.62 0.05 18.28 37.65 30.54 6.78 2.55 5.02 3.99 1.03 

P2 0.46 0.71 0.61 0.08 18.32 36.39 30.03 6.33 2.54 5.18 4.09 1.11 

P3 2.06 6.60 0.65 0.11 17.97 35.56 29.41 6.29 2.65 5.26 4.34 0.93 

P4 2.06 6.60 0.82 0.28 18.11 35.35 28.83 5.99 2.59 5.45 4.48 0.98 

The spatial analysis of the biophysical parameters presented in Table 4 
reveals notable variations within the study area, which have important 
implications for understanding the ET dynamics of the date palm crop. The 
LAI values ranged from 0.54 to 0.68, with a mean of 0.62 and a σ of 0.05. 
This moderate variability in the vegetation cover across the different pixels 
suggests heterogeneity in the crop growth and canopy development within 
the study area. In contrast, the LST exhibited a much wider range, 
fluctuating from 18.28°C to 36.39°C, with a mean of 30.54°C and a σ of 
6.78°C. This substantial variation in the thermal characteristics of the land 
surface across the pixels highlights the spatial complexity of the 
microclimate within the cultivated area. 
 
The ALARM model's estimated ETa values also showed considerable 
variability, ranging from 3.99 mm/day to 4.48 mm/day, with a mean of 
4.20 mm/day and a σ of 0.98 mm/day. This spatial heterogeneity in the 
ETa estimates is likely influenced by the observed differences in the 
biophysical parameters, particularly the LAI and LST. The higher LAI 
values observed in the study area (up to 0.85) suggest that the increased 
vegetation cover played a role in enhancing the energy available for the 
evapotranspiration process, contributing to the relatively higher ALARM 
ETa estimates. Furthermore, the substantial variations in LST across the 
pixels suggest that the thermal environment is a significant factor 
influencing the ET dynamics within the study area. The higher surface 
temperatures are expected to increase the atmospheric demand for water, 
thereby driving higher ET rates. The interplay between the LAI and LST 
likely contributed to the observed variability in the ALARM ETa estimates 
across the different pixels. As shown in Table 4, there was a difference 
between the mean estimated LAI for Landsat pixels. It was found LAI 
ranged between 0.60 and 0.85 and for Landsat pixels. The LST ranged 
between 28.83℃ and 30.54 ℃ for Landsat pixels. Table 4 shows ALARM ET 
based on estimated LAI. In ALARM, by increasing LAI, the aerodynamic 
temperature Ti decreases. Thus, the value of H decreases, and more energy 
is available for ET. It was found that the main factor for high ALARM ETa 
obtained from Landsat data was mainly high LAI. 
 
Most farms in Jordan are relatively small (around three ha), and the use of 
Landsat 8 satellite images to estimate ET for an individual farm may not 
provide an accurate representation of the actual ET, as some pixels may be 
"mixed pixels" containing the target crop (date palm) as well as other 
elements, such as bare soil, other crops, and buildings. In this study, four 
full-crop pixels (containing only date palms) were selected from the middle 
of the date palm field to minimize the influence of these mixed pixels. 
Results in Figure 5 showed that dimensionless temperature (ΔT) values for 
the different pixels during the study period. The ΔT values were greater 
than zero for all pixels. Within the same pixel, the variation between 
maximum ΔT and minimum ΔT was not high during the study period. The 
ΔT values ranged from (0.57) for pixel P4 to (0.6) for pixel P1. For ideally, 
ΔT ranges from 0 when ET is maximum (ETmax = Rn-G) to 1 when ET is 
minimum (ETmin = 0). A low value of ΔT indicates sufficient soil moisture 
while high values of ΔT indicate limited soil moisture, available to meet ET 
demands. 
 

 
 

 
Figure 5: Dimensionless temperature (ΔT) for the different pixels for the 

study period. 
 
The present study is highly consistent with some previous research. 
estimated water requirements for a mixture of olive and date trees using 
daily MODIS satellite images and the ALARM model (Derdar, 2011). The 
RMSE between ALARM and measured daily ET was 0.65 mm/day. Study of 
to estimate the optimal water requirements for date palm trees in Al-Hassa 
Oasis (Biro et al., 2020). Landsat 8 satellite data was used to estimate the 
daily, monthly, and yearly evapotranspiration rates of the trees by using 
the SEBAL model. The results showed a significant agreement level 
between the SEBAL model and the FAO P-M method with an RMSE of 0.84 
mm/day. The analysis  estimated the ET of alfalfa crops using the ALARM 
method and compared it with measured alfalfa ET computed from a water 
balance equation (Suleiman and Al-Bakri, 2011). The results showed RMSE 
for ALARM estimates of alfalfa was 0.87 mm/day. 
 
4.2 Comparative Analysis of ETLook ETa from the FAO WaPOR Portal 
 
The ETLook-WaPOR approach partitions the WaPOR ETa to evaporation 
and transpiration using the modified PM equation, which differentiates the 
net available radiation and resistance formulas based on the vegetation 
cover according to the ETLook model. Daily ETLook ETa was estimated 
from the Wapor portal database for the different pixels in the study area 
and is presented in Figure 6. 
 

 
 

Figure 6: ETLook Dekadal ETa values for the different pixels. 
 
Wapor portal ETLook ETa data represent Dekadal (10-day) composites of 
ET, which contain the average daily ET during the Dekadal period. At 
national scale 100 m resolution (called Level 2), the Wapor ETa data set 
was acquired using observations from MODIS and PROBA-V satellite 
thermal data. Figure 6 shows a clear increasing trend in the ETa values 
over the study period, starting from around 0.5 mm/day in early February 
and reaching a maximum of approximately 2.5 mm/day during the 
Dekadal period from 1-10 April, after which the values began to decrease. 
This temporal pattern reflects the changing environmental conditions and 
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increasing crop water demand as the growing season progresses. When 
examining the differences between the pixels, the data reveals significant 
spatial variability in the ETa values. For instance, during the 1-10 February 
Dekadal period, the ETa ranged from around 0.5 mm/day for P1 to over 
1.0 mm/day for P4. By the 1-10 May Dekadal period, this range had 
expanded, with P1 recording an ETa of around 1.2 mm/day, while P4 
reached nearly 2.5 mm/day. This spatial heterogeneity in ET suggests the 
influence of site-specific factors, such as soil moisture, vegetation cover, 
and microclimate conditions, on the crop water use within the study area. 
To evaluate the performance of the ETLook model, in order to check 
whether it overestimates or underestimates ETa in comparison to the 
FAO56 method, compare the average daily values of Wapor ETa, derived 
from the average daily values of each Dekadal period (10-days). 
 
4.3 Comparative Analysis of ET Estimation: ALARM Vs. ETLook 

 
The estimation of ETa for date palm cultivation was carried out using two 

distinct methodologies: the ALARM model and the ETLook algorithm. Each 

approach offers unique insights into the water requirements of date palms 

and highlights the spatial variability of ETa across the study area. The 

ALARM model employs an energy balance approach, integrating 

biophysical parameters such as LAI and LST derived from Landsat satellite 

imagery (Asadi and Karami, 2020). This model is particularly adept at 
capturing the complexities of ET dynamics across various locations due to 
its sensitivity to changes in these parameters. By relying on high-resolution 
satellite data, the ALARM model can effectively account for variations in 
canopy structure and thermal conditions, which are critical for 
understanding the water needs of date palms throughout their growing 
season (Asadi and Karami, 2020). 
 
In contrast, the ETLook algorithm utilizes a modified Penman-Monteith 
equation to partition ETa into evaporation and transpiration components 
based on vegetation cover. This method leverages data from the WaPOR 
portal and produces Dekadal (10-day) composites of ETa, which smooth 
out daily fluctuations to provide a more generalized view of water 
consumption (Sejine and Anane, 2024). By offering three readings per 
month for each pixel, the ETLook algorithm allows for a broader 
assessment of ET trends but may not capture the finer details of localized 
conditions as effectively as the ALARM model. The results from both 
models reveal significant insights into the water requirements of date 
palms. Table 5 summarizes the estimated ETa values for date palm 
cultivation, comparing the ALARM model and the ETLook algorithm across 
four different pixels. This data includes minimum, maximum, mean, and 
standard deviation values for each method, as well as the root mean square 
error (RMSE) for each pixel. 

Table 5: Summary statistics of ETa estimated by ALARM and ETLook for different pixels. 

 

Pixel 
ID. 

 ALARM ETa ETLook ETa 

RMSE Min Max Mean σ Min Max Mean σ 

P1 2.861432 2.5467 5.02 3.996 1.026 0.9 1.9 1.35 0.497 

P2 2.991861 2.5417 5.18 4.092 1.108 0.9 1.8 1.3 0.3795 

P3 2.484986 2.6489 5.26 4.3433 0.9273 0.9 2.3 1.9 0.5329 

P4 2.458642 2.5923 5.45 4.4855 0.9788 1.2 2.5 2.083 0.475 

Average 2.6992302 2.5824 5.23 4.23  0.975 2.125 1.66  

The analysis presented in Table 5 highlights significant disparities 
between the ALARM model and the ETLook algorithm in estimating ETa 
for date palm cultivation. The ALARM model consistently yields higher ETa 
values across all pixels, with mean values reaching up to 4.4855 mm/day 
for pixel P4, while the ETLook algorithm peaks at a mean of only 2.083 
mm/day. This discrepancy indicates that the ALARM model is more 
sensitive to biophysical parameters and environmental conditions, 
effectively capturing a broader range of water requirements essential for 
optimal growth. 
 
When examining the minimum daily ETa values, it reveals that the ETLook 
algorithm consistently produces lower estimates than the ALARM model 
across all pixels. For instance, the minimum daily ETLook value for pixel 
P1 is 0.9 mm/day, whereas the ALARM model’s minimum is 2.5467 
mm/day, resulting in a relative difference of approximately 64.7%. This 
pattern persists across pixels, with relative differences ranging from 
64.7% in pixel P1 to about 61.5% in pixel P4, where the minimum ETLook 
value is 1.2 mm/day compared to the ALARM model's 2.5923 mm/day. 
Similarly, the maximum daily ETa values for the ETLook algorithm fall 
below those of the ALARM model. For example, the maximum ETLook 
value for pixel P1 is 1.9 mm/day, while the ALARM model’s maximum is 
5.02 mm/day, showing a relative difference of about 62.2%. This trend 
continues across all pixels, with maximum relative differences reaching 
60.5% in pixel P4, where the maximum ETLook value is 2.5 mm/day 
compared to the ALARM model's 5.45 mm/day. 
 

In terms of variability, the σ for the ALARM model ranges from 0.9273 
mm/day to 1.108 mm/day, indicating greater variability in its estimates. 
In contrast, the ETLook shows lower σ, ranging from 0.3795 mm/day to 
0.5329 mm/day. The analysis of ETa values from both the ALARM model 
and the ETLook reveals a range of RMSE values between 2.458 mm/day 
and 2.992 mm/day, with an average RMSE of approximately 2.7 mm/day. 
This RMSE range indicates the degree of deviation of the estimated ETa 
values from the observed measurements, highlighting the overall accuracy 
of both models in estimating ET for date palm cultivation. The average 
RMSE suggests that, while both models provide valuable insights, there is 
variability in their performance across different pixels, emphasizing the 
importance of context-specific factors in ET estimation. 
 
This analysis emphasizes the need to carefully select ET estimation 

methodologies based on specific agricultural contexts. In heterogeneous 

landscapes like those used for date palm cultivation, combining the 

strengths of both models can improve water use efficiency and inform 

sustainable agricultural practices. Ultimately, accurate ETa estimation is 

crucial for effective water resource management in arid and semi-arid 

regions. Table 6 provides a comprehensive comparison between the 

ALARM model and the ETLook algorithm based on their methodologies, 

data sources, performance, and results in estimating ETa for date palm 

cultivation. 

Table 6: Comparison of ALARM and ETLook models for ETa estimation in agriculture. 

Criteria ALARM Model ETLook Algorithm 

Methodology 

Utilizes an energy balance approach that incorporates LAI 
and LST derived from Landsat satellite imagery. This 

model calculates ETa based on the available energy for ET 
processes. 

Employs a modified Penman-Monteith equation to 
separate evaporation and transpiration based on 

vegetation cover. This algorithm uses thermal data 
from the WaPOR portal to estimate ETa. 

Data Source 
Utilizes Landsat 8 and 9 satellite imagery, providing high-
resolution data (30 m). This allows for detailed analysis of 

localized conditions affecting ETa. 

Relies on the WaPOR portal, which uses data from 
MODIS and PROBA-V satellites at a national scale 

with a resolution of 100 m. 

Spatial Resolution 
High spatial resolution (30 m) enables precise estimation 

of ETa across various microenvironments within the study 
area. 

National scale, 100 m resolution, which may lead to 
less detail in heterogeneous landscapes. 
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Table 6 (Cont.): Comparison of ALARM and ETLook models for ETa estimation in agriculture. 

Temporal Resolution 
Provides daily ETa estimates, allowing for detailed 

monitoring of temporal changes in crop water 
requirements. 

Offers Dekadal (10-day) composites of ETa, which 
smooths out daily variations but may miss critical 

fluctuations in water demand. 

ETa Range 
Estimates range from 2.5824 mm/day to 5.23 mm/day, 
reflecting the increasing water demands of date palms 

during the growing season. 

Estimates range from approximately 0.975 mm/day 
to 2.125 mm/day, indicating a more conservative 

water use estimation. 

Trend in ETa 
Displays a consistent upward trend throughout the 

growing season, aligned with the physiological needs of 
the date palms. 

Shows an increasing trend but at lower values 
overall, which may not fully capture the peak water 

demands of the crop. 

Spatial Variability 
Exhibits notable differences in ETa across various pixels, 
influenced by localized factors such as soil moisture, crop 

management practices, and microclimates. 

Shows significant spatial variability; however, the 
broader scale may obscure finer details of localized 

conditions. 

Strengths 

Highly sensitive to changes in biophysical parameters, 
effectively reflecting the complexities of ET dynamics 

across different environments. Ideal for detailed localized 
assessments. 

Useful for broader regional evaluations, providing a 
simpler methodology that can be easier to 

implement in large-scale assessments. 

Weaknesses 
Risk of overestimating ETa if not properly calibrated; 
requires accurate input data for optimal performance. 

Tends to underestimate ETa during peak demand 
periods, potentially leading to insufficient irrigation 

recommendations. 

Performance Metrics 
Generally provides higher ETa estimates compared to the 
ETLook algorithm, demonstrating greater responsiveness 

to variations in LAI and LST. 

Produces lower estimates of ETa, which may 
indicate a conservative approach that does not fully 

account for localized water needs. 

Overall, while both methods provide valuable insights into ETa for date 
palm cultivation, the ALARM model appears better suited for detailed 
assessments due to its responsiveness to changing biophysical parameters. 
The ETLook model, while useful for broader regional evaluations, may 
underestimate the water requirements of date palms, particularly during 
peak growth periods. Understanding these differences is crucial for 
optimizing irrigation strategies and enhancing water management 
practices in date palm cultivation. This analysis underscores the 
importance of selecting the appropriate method based on the specific 
agricultural context and the desired level of detail in water management 

strategies, ultimately contributing to improved water use efficiency and 
sustainability in date palm cultivation. 
 
4.4 Comparative Analysis of Current Study and Previous Research 
 
Table 7 summarizes the methodologies, results, and focuses of the current 
study on date palm ET in Jordan, specifically utilizing the ALARM and 
ETLook models, alongside several relevant studies from the literature. This 
comparison highlights key differences and similarities in approaches and 
findings. 

Table 7: Summary of studies on ETa and crop water management. 

Study Method Used Results Focus 

Current Study 
ALARM model and ETLook model, 

Landsat 8 & 9 satellite imagery. 

ALARM ETa values: 2.5824-5.23 
mm/day; average 4.23 mm/day. 

ETLook values: 0.975-2.125 mm/day; 
average 1.66 mm/day. 

Estimation of ETa in date palms. 

(Sejine and Anane, 2024) 
WetSpass-S model and FAO ETLook 

model, Sentinel-2 imagery. 

ETa values for 2020/2021: 350 
mm/year; WetSpass-S generally 

provided higher values than FAO for 
surface water; significant differences 

over 800 mm in irrigated areas. 

Assessment of ETa and water 
balance components in 

Grombalia phreatic aquifer. 

(Wu et al., 2022) 
Multiscale network with coordinate 

convolutional and attention modules. 

Accuracy scores: OA 0.9481, kappa 
0.9115; improves mapping accuracy by 

addressing spectral and spatial 
challenges. 

Crop mapping using remote 
sensing technology. 

(Degerli and Çetin, 2022) 
RS-GIS technology, MLC algorithm, 

MLP-ANN for future predictions. 

MLP-ANN accuracy: 72%; predicted 
land use changes for 2030 with 
significant shifts in land cover. 

Land use/cover analysis using 
remote sensing. 

(Al-Bakri et al., 2022) 
Remote sensing, GIS, climatic data, 

WaPOR data. 

Highlighted importance of WaPOR for 
AWA; identified underestimation of 

percolated water. 

Agricultural water accounting in 
Jordan Valley 

(Asadi and Karami, 2020) 
Analysis of Landsat 7 & 8 images, 

SEBAL, METRIC, and ALARM 
methods. 

ALARM showed ET rates but less 
accuracy compared to SEBAL; highest 

ET on July 1, 2018 (7.86 mm/day). 
ET measurement in wheat crops. 

(Blatchford et al., 2020) 
Assessment of irrigation 

performance indicators at varying 
resolutions. 

Different resolutions affected 
adequacy, equity, and productivity; 
higher resolutions captured more 

variability. 

Irrigation performance 
assessment. 

(Kalua et al., 2020) 
Comparison of sUAS and EOS data for 

ET measurement. 

sUAS ET estimates lower than EOS by 
>0.5 mm; useful for local irrigation 

management. 

Evaluating ET using sUAS and 
earth observation. 

(Trottier et al., 2020) 
Geospatial analysis and qualitative 

methods. 

Highlighted social implications of date 
palm cultivation on labor and land 

tenure. 

Socioeconomic impacts of 
agricultural transformation. 
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Table 7(Cont.): Summary of studies on ETa and crop water management. 

(Tan et al., 2018) 
Satellite imagery and empirical 

downscaling. 

ET monitoring showed a 5% reduction 
post-water-saving measures; drip 

irrigation conserved water. 

Water management through ET 
monitoring. 

(Van et al., 2017) 
ALOS/AVNIR-2 and 

Landsat/OLI&TIR sensors, Maximum 
Likelihood Classification. 

Significant reduction of urban green 
space from 2007-2017; projected 

decline in vegetation cover. 

Assessment of urban green space 
and sustainability in Nha Trang. 

(Owaneh and Suleiman, 
2018) 

ALARM and SEBAL models, Landsat 8 
imagery, lysimeter data. 

Modified ALARM provided more 
accurate ET estimates than SEBAL; 

both models underestimated ET. 

Testing ALARM and SEBAL 
against lysimeter data. 

(Al Zayed et al., 2016) 
Remote sensing methods (SSEB, 

MODIS, and NDVI). 

SSEB and MOD16A2 were most 
suitable for estimating ETa; effective 

for regional and daily scale. 

Evaluation of RS methods for ETa 
in irrigation schemes in Sudan. 

(Al-Antary et al., 2014) 
Field surveys and classification of 

insect pests. 

Identification of various arthropod 
pests affecting date palms; created 

identification keys. 

Insect pest survey and 
classification in date palms. 

(Sperling et al., 2014) 
Modified Jarvis-Penman-Monteith 

model incorporating water salinity. 

High water salinity reduced palm tree 
ET; developed a model for irrigation 

recommendations; 20% water 
reduction. 

Impact of water quality on palm 
tree ET. 

(Ghamarnia et al., 2014) 
Drainable lysimeter and Penman-

Monteith method. 

Water requirement for black cumin: 
724 mm; established crop coefficients 

and regression models for ET. 

Water requirements and crop 
coefficients for medicinal plants. 

(Bastiaanssen et al., 2012) 
ETLook model, optical and passive 

microwave sensors. 

ET: 1.2 mm/day; basin-wide ET: 496 ± 
16.8 km³/yr; average net radiation: 

112 W/m2. 

Surface energy fluxes and ET in 
the Indus basin. 

(Suleiman and Al-Bakri, 
2011) 

Water balance equation for ET 
measurement in alfalfa. 

ET rates: 6-10 mm/day; RMSE for 
ALARM: 0.87 mm/day; ALARM ET 

closely aligned with FAO-56. 
ET in irrigated alfalfa. 

(Derdar, 2011) 
MODIS satellite images and eddy 

covariance system. 

Average ET: 5.67 mm/day (measured), 
5.61 mm/day (ALARM); RMSE: 0.65 

mm/day. 

ET estimation for olive and date 
trees. 

(Suleiman et al., 2008) 
ALARM method across different 

ecological zones. 

Significant variability in wheat ET is 
influenced by soil types, vegetation, 

and irrigation practices. 
ET of wheat in Jordan. 

The comparative analysis reveals distinct methodologies and results 
across the various studies. The current study utilizes the ALARM and 
ETLook models, integrated with high-resolution Landsat 8 and 9 
imageries, to estimate ETa specifically for date palms. This approach 
yielded ETa values between 2.58 mm/day and 5.23 mm/day, with an 
average of 4.23 mm/day for the ALARM model, while the ETLook model 
provided lower estimates ranging from 0.975 mm/day to 2.125 mm/day. 
This significant disparity in results underscores the critical role of model 
selection based on the specific agricultural context. 
 
According to analysis, employed the WetSpass-S model and FAO ETLook 
model using Sentinel-2 imagery, reporting an annual ETa of 350 mm/year 
(Sejine and Anane, 2024). Their findings highlight the limitations of 
utilizing surface water models without considering crop-specific 
dynamics. Similarly, applied a multiscale network for crop mapping, 
achieving high accuracy scores (OA 0.9481, kappa 0.9115) but did not 
focus on ETa specific to date palm (Wu et al., 2022). Although these studies 
address various agricultural issues, such as water balance and land use 
changes, they do not delve into the specificities of ETa in date palms. The 
focus on date palms in the current study allows for tailored insights that 
are particularly relevant to regions reliant on this crop, enhancing practical 
applicability. 
 
Another noteworthy comparison is with who utilized remote sensing and 
machine learning techniques for land use analysis (Degerli and Çetin, 
2022). While their study achieved a prediction accuracy of 72%, it lacked 
the detailed ETa estimation provided in our research.  Furthermore, 
analyzed ET rates in wheat crops using SEBAL and ALARM methods, noting 
that ALARM showed less accuracy compared to SEBAL, which emphasizes 
the need for tailored methodologies depending on the crop type and 
environmental conditions (Asadi and Karami, 2020). 
 
The current study's focused methodology on date palms distinguishes it 
from broader studies that often address multiple crops or agricultural 
systems. This specificity is crucial, as it allows for targeted irrigation 
strategies that enhance water use efficiency. The results from this study 
align with findings from which emphasize the importance of effective 
water management techniques and the suitability of remote sensing 

methods for ETa estimation .The study tested the ALARM model against 
lysimeter data, finding it slightly more accurate than SEBAL, which 
supports the current study's methodology (Owaneh and Suleiman, 2018). 
Other studies, like those further contextualize the significance of ET 
estimation and water quality in agricultural practices (Al Zayed et al., 2016; 
Sperling et al., 2014). 
 
Overall, these studies demonstrate the diversity of methodologies in 
remote sensing applications, underscoring their relevance in both 
agricultural and urban contexts. The integration of findings from these 
various studies not only enhances understanding of water requirements 
and management strategies for date palms in Jordan but also informs 
broader discussions on sustainability and resource management in arid 
regions. This comprehensive perspective is essential for improving 
agricultural productivity and environmental resilience in the face of 
climate challenges. 
 

5. CONCLUSION 

 
This study offers a comprehensive evaluation of the water requirements 
for date palm cultivation in Jordan, focusing on the importance of 
accurately estimating ETa to support sustainable agricultural practices. 
Through a detailed comparative analysis of the Analytical ALARM model 
and the ETLook model, we have highlighted significant differences in their 
performance and applicability. Conducted from February 9 to May 15, 
2024, this research utilized six satellite images from Landsat 8 and 9, 
yielding crucial insights into the water dynamics of date palm. The ALARM 
model demonstrated a range of ETa values from 2.58 mm/day to 5.23 
mm/day, with an average of approximately 4.23 mm/day. In contrast, the 
ETLook model provided lower estimates, from 0.975 mm/day to 2.125 
mm/day. This disparity indicates that while the ALARM model is capable 
of capturing the higher water demands during critical growth phases, the 
ETLook model may not fully reflect the irrigation needs during these 
periods. 
 
The findings also revealed a notable spatial variability in ETa estimates, 

with the ALARM model effectively representing diverse canopy structures,  



Water Conservation & Management (WCM) 9(1) (2025) 93-104 

 

 
Cite The Article: Shadia Alqudaha, Ayman Suleimana, Motasem Y.D. Alazaizab, Heba Al -Jawaldeha (2025). Evaluating Crop Water 

Requirements: A Case Study Of Date Palms In Water-Scarce Jordan. Water Conservation & Management, 9(1): 93-104. 

as evidenced by its LAI values ranging from 0.54 to 0.68. Additionally, LST 
readings exhibited a significant correlation with ETa, ranging from 18.28°C 
to 36.39°C, highlighting the importance of thermal conditions in 
evapotranspiration processes. Given these insights, we propose that 
integrating both models—leveraging the ALARM model's strengths for 
localized assessments and the ETLook model's broader regional 
applicability—can enhance irrigation management strategies. This dual 
approach not only improves water use efficiency but also promotes 
sustainable agricultural practices tailored to the specific needs of date 
palm orchards in Jordan. 
 
As we face increasing climate variability and water scarcity, the strategies 
developed from this study are vital for ensuring the resilience of 
agriculture in arid and semi-arid regions. By synthesizing our findings with 
existing literature, we provide a robust framework for future research and 
practical applications in agricultural water management. This 
comprehensive understanding of ETa estimation is crucial for optimizing 
irrigation practices and advancing the sustainability of agricultural 
systems in Jordan and similar environments. 
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