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ARTICLE DETAILS ABSTRACT

Article History: The governance of urban areas now extends beyond managing population growth, as urban expansion has
amplified cities’ susceptibility to climate change effects. As a result, urban water supply systems are under
increasing pressure, highlighting the necessity for utility managers and policymakers to adopt sustainable
demand management strategies to enhance water resource resilience. The aim of this paper is to model
monthly water demand using the Principal Component Regression (PCR) method. The analysis is conducted
over a seven-year dataset (2015-2021) and incorporates demographic and climatic variables specific to
Casablanca, Morocco. Furthermore, projected climatic variables from the CMIP6 over Mediterranean regions
under SSP1 -2.6 and SSP5-8.5 Pathways was driven in order to forecast monthly water demand for the near
term. This research contributes to the development of adaptive strategies for urban planners, enabling them
to anticipate future water demand and implement necessary measures to enhance sustainability assessments.
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1. INTRODUCTION

Water has become a challenge of global dimensions (Pahl-Wostl et al.
2013). Many researchers and policy makers have given attention on large
water consumers as agriculture and industry, giving minor focus to the
capacity of cities to manage the urban water cycle properly (Rockstrom et
al. 2014). Urban water management (UWM) has recently received more
consideration, in part due to the global Sustainable Development Goal on
water of Agenda 2030 (SDG 6). The generally accepted approach to UWM
aimed to create resilient, loveable, productive and sustainable cities and
towns. Therefore, most of the existing strategies and measures has only
blindly concentrated on developing new resources, generally non-
conventional, in order to satisfy the constantly increasing demand of the
principal resource. That is to say, in response to population growth,
increase of densely inhabited areas, development of the economic
conditions a parallel increase in the total water consumption has to be met.
This paradigm has necessitated a shift towards incorporating both water
supply interventions and demand management strategies to effectively
address the constraints of limited water resources. Water demand
management strategies involve implementing effective usage restrictions,
introducing programs aimed at reducing consumption, optimizing supply
processes, and developing sustainable alternative water sources
(Adamowski and Karapataki, 2010). Among various approaches,
forecasting water demand plays a crucial role in enhancing the efficiency
and sustainability of water resource management. It facilitates informed
decision-making, contributing to the effective operation and management
of water supply systems while supporting their long-term planning and
design (Bougadis et al.,, 2005).

Water demand forecasting can be categorized into three main classes
based on the forecast horizon and periodicity: (i) short-term forecasting,

(ii) medium-term forecasting, and (iii) long-term forecasting (Bougadis et
al,, 2005; Froelich, 2015). While there is no universally accepted definition
for these classifications, several studies suggest that forecasts extending
beyond two years are considered long-term, those ranging between three
months and two years fall under medium-term forecasting, and forecasts
covering less than three months are classified as short-term (Bougadis et
al,, 2005). Long-term forecasting models of urban water demand play a
crucial role in shaping policies and strategies to ensure future water supply
adequacy. Additionally, long-term projections support the development,
planning, and design of new water infrastructure while aiding in the
identification of effective water conservation measures (Babel et al.,, 2007;
Ghiassi et al,, 2008; Firat et al., 2009; Herrera et al., 2010; Haque et al,,
2014). Conversely, medium-term forecasting is instrumental in guiding
strategic investment decisions and planning for the expansion of existing
water infrastructure, whereas short-term forecasting is primarily utilized
for optimizing the operation and maintenance of water supply systems
(Herrera et al, 2010; Jain and Ormsbee, 2002). Consequently, all
forecasting timeframes are essential for enabling relevant authorities to
manage water supply systems with greater efficiency and effectiveness.

Accurately forecasting water demand remains a complex and challenging
task, influenced by various factors such as the type and quality of available
data, the multiplicity of water demand variables, geographical variations
across forecast regions, differences in forecasting horizons, and diverse
demographic conditions. Numerous exogenous factors influence
predictive models of urban water demand, either directly or indirectly.
These factors range from climatic and meteorological conditions to the
geographic characteristics of the study areas. Additionally, economic
indicators, socio-demographic conditions, calendar-based variations, and
technological advancements have been identified as significant variables
in the development of urban water demand forecasting methods (Niknam
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et al, 2022). As a result, extensive research has been conducted to refine
demand modeling approaches and improve forecasting tools, ultimately
enhancing the overall accuracy and reliability of predictions.

A wide range of methods has been employed in water demand forecasting,
including regression analysis time-series modeling and artificial neural
networks (Salloom et al., 2021; Hu et al,, 2021; Herrera et al,, 2010; Haque
et al, 2017; Bakker et al, 2014; Maruyama and Yamamoto, 2019;
Rasifaghihi et al, 2020; Chen and Boccelli, 2014; Arandia et al,, 2016;
Ristow et al., 2021). Additionally, some studies have explored hybrid
modeling approaches by integrating two or more methods to improve
predictive accuracy (Herrera et al,, 2011; Oliveira et al.,, 2017; Sardinha-
Lourengo et al., 2018). Among these techniques, multiple linear regression
(MLR) remains one of the most widely applied methods for water demand
forecasting due to its relative simplicity and ease of interpretation
(Adamowski and Karapataki, 2010). Various adaptations of MLR, including
linear, log-linear, and log-log models, have been utilized in water demand
modeling. In MLR applications, multiple influencing factors discussed
earlier are incorporated into the model, either with or without logarithmic
transformations.

Several studies have employed the principles of MLR techniques while
modifying the selection of water demand variables, replacing original
variables with alternative representations. Principal Component
Regression (PCR) is a form of regression analysis that utilizes principal
components (PCs) as independent variables instead of the original dataset
(Pires et al.,, 2008). These PCs are derived as linear combinations of the
original variables through Principal Component Analysis (PCA), which
transforms a set of intercorrelated independent variables into a new set of
uncorrelated components. By incorporating PCs as independent variables
in multiple regression models, PCR effectively mitigates multicollinearity
issues and identifies the most influential predictors for water demand
management. For instance, applied both MLR and PCR techniques to
predict the significant concentrations of seven environmental pollutants
affecting the ozone layer (Abdul-Wahab et al, 2005). The research
integrated a multiple regression model with PCA to enhance the prediction
of urban water demand in Aquidauana, Mato Grosso do Sul (MS), (Brazil
Ristow et al,, 2021). When comparing the performance of PCR and MLR for
both modeling and forecasting, PCR demonstrated superior accuracy in
simulating water demand. These studies collectively highlight that
incorporating PCs as independent variables not only improves predictive
performance but also simplifies model complexity by eliminating
multicollinearity.

This study seeks to explore, for the first time in Casablanca, Morocco, the
application of the Principal Component Regression (PCR) method for
short-term urban water demand forecasting. The primary goal is to
determine the most influential variables in water demand modeling using
PCR. Furthermore, the established PCR model is employed to forecast
monthly water demand in Casablanca for the near-term period (2021-
2040) based on projected explanatory variables.

2. STUDY AREA AND DATA

2.1 Study Area

Casablanca, often referred to as the "White City," is situated on the Atlantic
coast of the Chaouia plain in the central-western region of Morocco. As the
largest city in North Africa, it serves as Morocco’s economic and financial
hub, recognized as a Global Financial Centre, ranking 53rd worldwide in
the Global Financial Centers Index for 2021. With a population exceeding
4 million, Casablanca plays a significant role in national economic activity,
particularly in household final consumption and value creation.

The interconnection between water resources and major urban centers is
critical, as large cities require substantial freshwater inputs while exerting
considerable pressure on freshwater systems. Sustainable urban
development relies on ensuring reliable access to safe drinking water and
adequate sanitation services. In this context, Lyonnaise des Eaux de
Casablanca (Lydec) operates as the public service provider responsible for

water and electricity distribution, wastewater and rainwater management,
and public lighting across the Greater Casablanca region, encompassing
Casablanca, Mohammedia, and Ain Harrouda. However, this study focuses
exclusively on Casablanca, as it is the most densely populated and
urbanized city within the region.

Figure 1: Greater Casablanca region, Lyonnaise des Eaux de Casablanca’s
action zone (2019)

Recently, Moroccan government imposed various water restrictions based
on the substantial deficit in the last months of 2021 to ensure a rational
management of the available water resources for the preservation of the
resource and, to guarantee the supply of drinking water in satisfactory
conditions in large cities such as Marrakesh and Casablanca (for instance,
Casablanca registered an increase of 15% of residential consumption for
the period of 2015-2021). The application of restrictions on the flow of
water distributed to users was the most severe restrictions among the
seven restrictions. Severely drier than normal conditions are forecasted at
most watershed scale. These forecasts currently represent the principal
concern, as they point to a possible evolution of the ongoing drought into
an extreme event. Monitoring and managing such evolution in the next
months are essential for risk and impact assessment, hence the strong need
for our study.

2.2 Data

Water demand is influenced by a wide range of factors, which can generally
be classified into two main categories: socioeconomic and climatic
variables. Research indicates that socioeconomic factors primarily drive
long-term trends in water consumption, whereas climatic variables
predominantly account for short-term seasonal fluctuations in water
demand (Miaou, 1990).

This study utilizes historical data on water consumption, demographic
factors, and climatic variables. Specifically, the dataset includes monthly
residential water consumption (m®), mean, maximum, and minimum
temperatures (°C), wind speed (km/h), relative humidity (%), total
population, and total rainfall (mm).

Water consumption data were obtained from Lyonnaise des Eaux de
Casablanca, population data were sourced from the Haut Commissariat au
Plan, and meteorological data were collected from the Direction de la
Météorologie Nationale in Casablanca. The available water consumption
records span from 2015 to 2021, representing the most comprehensive
dataset at the time of the study, with the possibility of updates in the future.
The projected climatic variables for the future period (2021-2040) were
derived from the IPCC WGI Interactive Atlas: Regional Information
(Advanced), based on data from the Coupled Model Intercomparison
Project Phase 6 (CMIP6). These projections were generated for the
Mediterranean region under the SSP1-2.6 and SSP5-8.5 scenarios.

3. METHODS AND STUDY DESIGN

In this section, we present the methodological approach applied in this
study (Figure 2).
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Figure 2: Method design
4. REGRESSION ANALYSIS

Regression analysis quantifies the linear relationship between a
dependent variable (Y) and one or more explanatory variables (X1, X2, ...,
Xm). This technique facilitates the modeling of associations between
selected variables and enables the prediction of values based on the
derived equation. When employing the ordinary least squares (OLS)
method, certain underlying assumptions must be validated to ensure the
reliability and accuracy of the regression model.

Yi=Bo+fiX1+ f2Xo+ -+ fmXm+ € (Eq. 1)
. Yi = observed value of the dependent variable at point/time i.

e B0 = intercept value, i.e intersection with the y-axis, the value of Yi
when X1=Xz=++=Xn=0.

e  PBi=regression coefficient or slope for explanatory variable X at point
i,i.e

o Bi=dY:
dXi

. £ error component.

To ensure the validity of the Ordinary Least Squares (OLS) method, the
following assumptions must be tested and confirmed:

. Linearity: The relationship between the dependent and independent
variables should be linear.

. Random Sampling: The data must be collected randomly to avoid
bias.

. No Multicollinearity: Independent variables should not be highly
correlated with each other

° Minimal Measurement Error: Explanatory variables should be
measured accurately.

° Zero Mean of Residuals: The sum of the residuals should be close to
Zero.

° Constant Variance: Residuals should have equal variance across all
levels of the independent variables (homoscedasticity).

. Normal Distribution of Residuals: Residuals should follow a normal
distribution.

. No Autocorrelation: Residuals should not be correlated with each
other over time.

4.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a multidimensional descriptive
technique, also referred to as a factorial method, that is applied to
quantitative variables. Its main objective is to transform a set of correlated
variables into a new set of uncorrelated variables, known as principal
components (PC1, PC2, ..., PCm). These principal components are derived
as linear combinations of the original variables (X1, X2, ..., Xm), allowing
for dimensionality reduction while preserving the essential structure of
the data.

PC1=a11X1+ a12X2 ... ... + A1mXm = Zn axj
PC2= anXi+ a2nX; ... .. +a2mXm=3Yyn a2jxj
PCi=Ym aijXj fori=1,..,m (Eq.2)

aij are the eigenvalues extracted from the covariance or correlation matrix
of the data set.

4.2 Principal Component Regression (PCR)

In Principal Component Regression (PCR) analysis, regression techniques
are combined with Principal Component Analysis (PCA) to establish a
relationship between the dependent variable Y and the transformed
independent variables, known as principal components (PC1, PC2, ..., PCm)
or (Diml, Dim2, .., Dimm). This transformation helps address
multicollinearity issues by replacing the original correlated variables with
uncorrelated components. The estimated PCR model is then expressed as
follows:

Yi=00+ 01PC1+ 02PCo+ -+ + OmPCim + € (Eq.3)

where 0i are the elasticity’s coefficients and ¢ is the error component.

In order to validate the quality of the estimated model, we used the
squared correlation coefficient indicator:

where Yi is the observed value and Yi is the predicted or estimated value
by the model.

4.3 Model Forecasting

Aregression model utilizing temporal data enables the prediction of future
values of the dependent variable Y, given that future values of some or all
explanatory variables X are available for the selected prediction horizon.
In this study, climate projections from CMIP6 were employed to estimate
future urban water demand in Casablanca. The developed PCR model was
applied to forecast average water consumption for the period 2022-2040,
integrating projected climatic variables to analyze potential trends in
water demand.

Y2022-2040 = 90 + 1P (12022-2040 4 P (,2022-2040 4 ... 4 BmPCmZOZZ—ZKMO +¢&

(Eq.4)
Where;

Y2022-2040 j5 the average forecasted urban water demand over the period
2022-2040.

P(2022-2040 g the constructed principal component based on CMIP6
scenarios data.

5. RESULTS AND DISCUSSION

Following data collection, a correlation coefficient matrix was generated
using SPSS software, as presented in Table 1. Statistically significant
correlation coefficients (p < 0.05) are marked with stars. These coefficients
help identify the strength of the linear relationship between variables and
detect potential collinearity among independent variables, which is crucial
for ensuring the reliability of the regression model.
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Table 1: Correlation variables matrix
Cons Precip Temp_min Temp_max Temp_moy Hum | Vitesse_v croi_demo
Cons Cgfr;’erlzgir;n 1 - 487 767 777 779%* 0,134 509+ A490%*
Sig.(2tailed) 0 0 0 0 0,226 0 0
Precip Pearson 1 - 581%* - 612% -603** -0,049 | -0,025 0,033
Correlation
Sig.(2tailed) 0 0 0 0,657 0,819 0,765
Temp_min Pearson 1 ,959%+ 1990%* 0,155 265 0,006
Correlation
Sig. (2-tailed) 0 0 0,159 0,015 0,956
Temp_max Cgfraer;‘t’i‘;n 1 988+ -0,028| 0,174 0,036
Sig. (2-tailed) 0 0,803 0,114 0,743
Temp_moy Cgfraer;‘t’i‘;n 1 0,063 227* 0,023
Sig. (2-tailed) 0,57 0,037 0,836
Hum Pearson 1 -0,157 -479%*
Correlation
Sig. (2-tailed) 0,155 0
Vitesse_v Pearso.n 1 ,658**
Correlation
Sig. (2-tailed) 0
croi_demo Pearso.n 1
Correlation
Sig. (2-tailed)
** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

From Table 1, Cons exhibited a negative correlation with Precip, which
aligns with expectations since higher precipitation reduces the need for
water consumption, leading to lower residential water demand.
Additionally, significant positive correlations were observed between key
variables, such as Cons and Temp_moy (0.779), Vitesse_v and croi_demo
(0.658), and Cons and Vitesse_v (0.509). These findings suggest the
presence of multicollinearity among the selected variables, which may
affect the reliability of regression estimates and necessitates the
application of techniques such as Principal Component Analysis (PCA) to
mitigate collinearity issues.

Dim.1
Dim.2
Dim.3
Dim4
Dim.5
Dim &
Dim.7

097

. 087

croi_demo

In the matrix diagram, the size of the colored disk represents the
contribution of each variable to the corresponding principal component,
with larger disks indicating a higher contribution. The analysis revealed
that the first principal component (PC1) was predominantly influenced by
climatic variables, particularly temperature and precipitation, while the
second principal component (PC2) was primarily associated with
demographic factors.

As shown in Table 2, the first four principal components were retained,
accounting for 96.33% of the total variance in the dataset. These four PCs
were selected to develop the Principal Component Regression (PCR)
model, ensuring a comprehensive representation of the underlying data
structure while minimizing redundancy.

Table 2: Variance explained by dimensions (PCs)

Hum

Precip

Temp_max

Temp_min

0.68

048

029

Temp_moy 018

. .

Figure 3: Principal components matrix diagram

Vilesse_v

Principal Component Analysis (PCA) was conducted on seven independent
variables to address multicollinearity and reduce dimensionality while
preserving the essential information. Each principal component (PC)
retains the overall variance of the original variables, ensuring that critical
data patterns are maintained. The eigenvalues corresponding to each
principal component are presented in Figure 3, which aids in selecting the
most relevant components and understanding the dataset's structure.

eigenvalue % of Var. Cum. %
Dim.1 3.4672 49.53 49.53
Dim.2 1.8847 26.92 76.46
Dim.3 0.8593 12.27 88.73
Dim.4 0.5317 7.60 96.33
Dim.5 0.2414 3.45 99.78
Dim.6 0.0150 0.21 99.99
Dim.7 0.0004 0.01 100.00

Table 3: Loadings of Seven Variables in Principal Components

(Dimensions)
Dim.1 | Dim.2 | Dim.3 | Dim.4 | Dim.5 | Dim.6 | Dim.7
croi_demo |0,083 |0921 |0,062 |0,132 (0,351 (0,004 | 0,000
Hum 0,055 |[-0,657 (0,718 [0,156 |0,161 |-0,016 | 0,000
Precip |-0,714 |0,153 |0,251 |-0,633 |0,057 |-0,002 | 0,000
Temp_max |0,971 [-0,032 [-0,117 [-0,179 [0,048 |-0,087 |-0,008
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Table 3 (Cont.): Loadings of Seven Variables in Principal Components
(Dimensions)

Temp_min |0,976 (-0,072 [0,107 |-0,156 |0,016 |0,083 |-0,010

Temp_moy |0,984 (-0,049 (-0,002 (-0,168 |0,026 |0,006 | 0,018

Vitesse_v |0,290 (0,757 (0,502 [0,068 |(-0,294 |-0,014 | 0,000

The influence of each independent variable within a principal component
(PC) is determined by its component loading value, where higher absolute
values (closer to 1 or -1) signify a stronger association with the
corresponding component. The sign of the loading (+ or -) indicates
whether the relationship between the variable and the principal
component is positive or negative. As shown in Table 3, the first principal
component (Dim.1), which accounts for 49.53% of the total variance,
shows a strong negative loading for Precip (-0.714) and high positive
loadings for Temp_min (0.976), Temp_max (0.971), and Temp_moy
(0.984). This suggests that Dim.1 is predominantly influenced by
temperature variables, reflecting the impact of urban climate conditions.
The second principal component (Dim.2), explaining 26.92% of the total
variance, is strongly associated with croi_demo (0.921) and shows notable
loadings for Hum (-0.657) and Vitesse_v (0.757). Furthermore, the third
and fourth principal components (Dim.3 and Dim.4) are mainly
determined by Hum and Precip, respectively. These results indicate that
the first two components capture the majority of the variance in the
dataset, with Dim.1 representing climatic factors and Dim.2 reflecting the
combined influence of demographic and atmospheric variables.

Table 4: Outcomes of the regression analysis

Estimate Std. Error t value Pr(>|t])
(Intercept)] 17.110429 | 0.064101 266.931 .000 ***
Dim.1 0.560448 0.034425 16.280 .000 ***
Dim.2 0.365331 0.046691 7.824 .000 **+*
Dim.3 0.092781 0.069149 1.342 0.184
Dim.4 -0.008544 | 0.087902 -0.097 0.923
Signif. codes: 0 '***'0.001 '**' 0.01 '*'
0.05.'0.1'"'1
Residual standard error: 0.5875 on
79 degrees of freedom
Multiple R-squared: 0.8059, Adjusted R-squared: 0.7961

F-statistic: 82.02 on 4 and 79 DF, p-value: < 2.2e-16

To calculate the principal component (PC) scores, the component score
coefficients (eigenvectors) were multiplied by the values of the original
variables. These scores were then used as independent variables in the
multiple linear regression to identify the most influential PCs for
predicting water demand. Data from January 2015 to December 2021 were
utilized to construct the PCR model. As indicated in Table 4, the first four
principal components (i.e., Dim.1, Dim.2, Dim.3, and Dim.4) accounted for
approximately 80.59% of the variation in residential water consumption.
Among these, Dim.1 and Dim.2 were found to be the most significant
independent variables in the PCR analysis (p-value < 0.000), both having a
positive impact on urban water consumption. Specifically, an increase of
one unit in Dim.1 (comprising Precip, Temp_max, Temp_min, and
Temp_moy) and Dim.2 (comprising croi_demo, Hum, and Vitesse_v) would
result in a predicted increase of 0.56 Mm® and 0.3 Mm? in residential water
consumption, respectively. The resulting PCR model can be expressed as
follows:

ConsW =17.11 + 0.56 x Dim. 1 + 0.37 x Dim. 2 + 0.09 x Dim. 3 - 0.008 x
Dim. 4 (Eq.5)
A comparison between the observed and modeled monthly residential
water demand using the PCR model is shown in Fig. 4. The simulated values
for monthly water demand in the residential sector closely align with the
observed data. However, some discrepancies were noted in certain
months, which could be attributed to significant fluctuations in
temperature and rainfall, as well as potential changes in water
consumption patterns. A daily demand model might capture these
variations more effectively. Nonetheless, the Root Mean Square Error
(RMSE) for all forecasted months was only 0.57 for residential water
consumption, indicating that the developed model is highly accurate and
suitable for predicting both monthly and overall water demand.

25
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Figure 4: Comparison of observed and predicted residential water
demand in millions of cubic meter, Casablanca, Morocco

The developed models can be utilized to forecast water demand for future
months in Casablanca, provided the predictor variable data are available
(Eq. 1). However, if these predictor variables are not accessible, the models
cannot be applied directly. In this study, the IPCC Sixth Assessment Report
(AR6) from Working Group I (WGI) interactive atlas—advanced regional
information—was used to generate aggregated tables for various key
variables, as defined in the PCR model, for the Mediterranean region. These
projections were based on near-term scenarios under the weaker forcing
scenario (SSP1-2.6) and the stronger forcing scenario (SSP5-8.5),
representing the range of potential future climate trajectories.
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Figure 5: Predicted monthly mean residential water demand in the near
term (2021-2040) under SSP1-2.6 and SSP5- 8.5 scenarios in Casablanca,
Morocco.

The projections obtained from Figure 5 for both scenarios indicate higher
values compared to the current situation, primarily due to changes in key
predictor variables defined in the PCR model (Eq. 1), such as temperature.
The residential water demand will increase from 205 Mm3 (2015-2021) to
around 234 Mm3 as a mean value over the period of 2021-2040 under the
strongest scenario. This could capture a serious net increase of urban
water requirements during each year of the selected forecasted period.
This growth rate is estimated at around 1.6 Million m3 per year. The
projection values of SSP5-8.5 scenario is approximately higher than the
ones from SSP1-2.6 scenario and from the current state except for
September and December, highlighting the importance that small changes
on average monthly predicted PCs (Dim.1 and Dim.2) can cause major
changes in the water demand. In Casablanca, forecasted residential water
demand peaks during the summer months, and peak summer demand
occurs in August (21.54 Million m3 under SSP5-8.5 scenario). However,
what may go unmentioned is the increased variability in summer month
demands. As we can see from Figure 5, the average predicted residential
water demand during summer months (June- August) rises by 16% in
comparison of the average winter months (December-February)
residential water demand.
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The ability to accurately forecast water demand is crucial for the effective
operation of water utilities. The preparedness of the full infrastructure,
including both water treatment and distribution systems, plays a
significant role in determining water pricing. Therefore, it is essential for
water utilities to have access to detailed and precise water demand
forecasts. Short-term monthly forecasts are particularly important for
ensuring the efficient operation of the waterworks system, especially in
minimizing the time that water spends in pipelines and reservoirs, which
directly affects water quality. In cities like Casablanca and other major
Moroccan urban centers, this becomes even more critical due to the rising
water demand observed in recent years. As a result, hydraulic conditions
in the water distribution system have changed, posing a serious threat to
water quality, which can vary seasonally. By using accurate forecasting
models, water distribution processes can be optimized, ensuring proper
water quality, reducing risks, and enhancing the overall reliability of the
water supply system, from the water intakes to households.

6. CONCLUSION

As populations and urban areas continue to grow, effective urban planning
and sustainable water resource management are becoming increasingly
essential. This study aims to highlight the importance of predicted urban
water models in addressing future water scarcity issues, offering valuable
insights for decision-makers, water managers, and land planners. A deeper
understanding of the factors that alleviate future water shortages can help
local and regional planners identify policy solutions that enhance the
efficiency of water use moving forward.

Overall, the following key conclusions can be drawn:

. Seven Seven dependent variables were reduced to two key principal
components through PCA, which together explained 76.46% of the
total variance in the original dataset.

e  PCR model shows important accuracy for residential monthly water-
demand forecasting in Casablanca with capacity of prediction near to
80% (R2=10.8).

. In reference to the developed PCR model, water demand in
Casablanca city is predicted to increase, reaching a mean value of 234
millions of cubic meter with a peak water demand of 24.54 millions
of cubic meter over the period of 2021-2040 under SSP5-8.5 scenario.

The primary innovative contribution of this work is the development, for
the first time in Morocco, of a Principal Component Regression (PCR)
model to forecast water demand in Casablanca. This model incorporates
predicted variables from the latest phase (Phase 6) of the CMIP, generated
online via the IPCC WGI Interactive Atlas: Regional Information
(Advanced) for the Mediterranean region, under the SSP1-2.6 and SSP5-
8.5 scenarios.
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