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The governance of urban areas now extends beyond managing population growth, as urban expansion has 
amplified cities’ susceptibility to climate change effects. As a result, urban water supply systems are under 
increasing pressure, highlighting the necessity for utility managers and policymakers to adopt sustainable 
demand management strategies to enhance water resource resilience. The aim of this paper is to model 
monthly water demand using the Principal Component Regression (PCR) method. The analysis is conducted 
over a seven-year dataset (2015–2021) and incorporates demographic and climatic variables specific to 
Casablanca, Morocco. Furthermore, projected climatic variables from the CMIP6 over Mediterranean regions 
under SSP1 -2.6 and SSP5-8.5 Pathways was driven in order to forecast monthly water demand for the near 
term. This research contributes to the development of adaptive strategies for urban planners, enabling them 
to anticipate future water demand and implement necessary measures to enhance sustainability assessments. 
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1. INTRODUCTION 

Water has become a challenge of global dimensions (Pahl-Wostl et al. 
2013). Many researchers and policy makers have given attention on large 
water consumers as agriculture and industry, giving minor focus to the 
capacity of cities to manage the urban water cycle properly (Rockström et 
al. 2014). Urban water management (UWM) has recently received more 
consideration, in part due to the global Sustainable Development Goal on 
water of Agenda 2030 (SDG 6). The generally accepted approach to UWM 
aimed to create resilient, loveable, productive and sustainable cities and 
towns. Therefore, most of the existing strategies and measures has only 
blindly concentrated on developing new resources, generally non- 
conventional, in order to satisfy the constantly increasing demand of the 
principal resource. That is to say, in response to population growth, 
increase of densely inhabited areas, development of the economic 
conditions a parallel increase in the total water consumption has to be met. 
This paradigm has necessitated a shift towards incorporating both water 
supply interventions and demand management strategies to effectively 
address the constraints of limited water resources. Water demand 
management strategies involve implementing effective usage restrictions, 
introducing programs aimed at reducing consumption, optimizing supply 
processes, and developing sustainable alternative water sources 
(Adamowski and Karapataki, 2010). Among various approaches, 
forecasting water demand plays a crucial role in enhancing the efficiency 
and sustainability of water resource management. It facilitates informed 
decision-making, contributing to the effective operation and management 
of water supply systems while supporting their long-term planning and 
design (Bougadis et al., 2005). 

Water demand forecasting can be categorized into three main classes 
based on the forecast horizon and periodicity: (i) short-term forecasting, 

(ii) medium-term forecasting, and (iii) long-term forecasting (Bougadis et 
al., 2005; Froelich, 2015). While there is no universally accepted definition 
for these classifications, several studies suggest that forecasts extending 
beyond two years are considered long-term, those ranging between three 
months and two years fall under medium-term forecasting, and forecasts 
covering less than three months are classified as short-term (Bougadis et 
al., 2005). Long-term forecasting models of urban water demand play a 
crucial role in shaping policies and strategies to ensure future water supply 
adequacy. Additionally, long-term projections support the development, 
planning, and design of new water infrastructure while aiding in the 
identification of effective water conservation measures (Babel et al., 2007; 
Ghiassi et al., 2008; Firat et al., 2009; Herrera et al., 2010; Haque et al., 
2014). Conversely, medium-term forecasting is instrumental in guiding 
strategic investment decisions and planning for the expansion of existing 
water infrastructure, whereas short-term forecasting is primarily utilized 
for optimizing the operation and maintenance of water supply systems 
(Herrera et al., 2010; Jain and Ormsbee, 2002). Consequently, all 
forecasting timeframes are essential for enabling relevant authorities to 
manage water supply systems with greater efficiency and effectiveness. 

Accurately forecasting water demand remains a complex and challenging 
task, influenced by various factors such as the type and quality of available 
data, the multiplicity of water demand variables, geographical variations 
across forecast regions, differences in forecasting horizons, and diverse 
demographic conditions. Numerous exogenous factors influence 
predictive models of urban water demand, either directly or indirectly. 
These factors range from climatic and meteorological conditions to the 
geographic characteristics of the study areas. Additionally, economic 
indicators, socio-demographic conditions, calendar-based variations, and 
technological advancements have been identified as significant variables 
in the development of urban water demand forecasting methods (Niknam 
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et al., 2022). As a result, extensive research has been conducted to refine 
demand modeling approaches and improve forecasting tools, ultimately 
enhancing the overall accuracy and reliability of predictions.  

A wide range of methods has been employed in water demand forecasting, 

including regression analysis time-series modeling and artificial neural 

networks (Salloom et al., 2021; Hu et al., 2021; Herrera et al., 2010; Haque 

et al., 2017; Bakker et al., 2014; Maruyama and Yamamoto, 2019; 

Rasifaghihi et al., 2020; Chen and Boccelli, 2014; Arandia et al., 2016; 

Ristow et al., 2021). Additionally, some studies have explored hybrid 

modeling approaches by integrating two or more methods to improve 

predictive accuracy (Herrera et al., 2011; Oliveira et al., 2017; Sardinha-

Lourenço et al., 2018). Among these techniques, multiple linear regression 

(MLR) remains one of the most widely applied methods for water demand 

forecasting due to its relative simplicity and ease of interpretation 

(Adamowski and Karapataki, 2010). Various adaptations of MLR, including 

linear, log-linear, and log-log models, have been utilized in water demand 

modeling. In MLR applications, multiple influencing factors discussed 

earlier are incorporated into the model, either with or without logarithmic 

transformations. 

Several studies have employed the principles of MLR techniques while 

modifying the selection of water demand variables, replacing original 

variables with alternative representations. Principal Component 

Regression (PCR) is a form of regression analysis that utilizes principal 

components (PCs) as independent variables instead of the original dataset 

(Pires et al., 2008). These PCs are derived as linear combinations of the 

original variables through Principal Component Analysis (PCA), which 

transforms a set of intercorrelated independent variables into a new set of 

uncorrelated components. By incorporating PCs as independent variables 

in multiple regression models, PCR effectively mitigates multicollinearity 

issues and identifies the most influential predictors for water demand 

management. For instance, applied both MLR and PCR techniques to 

predict the significant concentrations of seven environmental pollutants 

affecting the ozone layer (Abdul-Wahab et al., 2005). The research 

integrated a multiple regression model with PCA to enhance the prediction 

of urban water demand in Aquidauana, Mato Grosso do Sul (MS), (Brazil 

Ristow et al., 2021). When comparing the performance of PCR and MLR for 

both modeling and forecasting, PCR demonstrated superior accuracy in 

simulating water demand. These studies collectively highlight that 

incorporating PCs as independent variables not only improves predictive 

performance but also simplifies model complexity by eliminating 

multicollinearity. 

This study seeks to explore, for the first time in Casablanca, Morocco, the 

application of the Principal Component Regression (PCR) method for 

short-term urban water demand forecasting. The primary goal is to 

determine the most influential variables in water demand modeling using 

PCR. Furthermore, the established PCR model is employed to forecast 

monthly water demand in Casablanca for the near-term period (2021–

2040) based on projected explanatory variables. 

2. STUDY AREA AND DATA

2.1 Study Area 

Casablanca, often referred to as the "White City," is situated on the Atlantic 

coast of the Chaouia plain in the central-western region of Morocco. As the 

largest city in North Africa, it serves as Morocco’s economic and financial 

hub, recognized as a Global Financial Centre, ranking 53rd worldwide in 

the Global Financial Centers Index for 2021. With a population exceeding 

4 million, Casablanca plays a significant role in national economic activity, 

particularly in household final consumption and value creation. 

The interconnection between water resources and major urban centers is 

critical, as large cities require substantial freshwater inputs while exerting 

considerable pressure on freshwater systems. Sustainable urban 

development relies on ensuring reliable access to safe drinking water and 

adequate sanitation services. In this context, Lyonnaise des Eaux de 

Casablanca (Lydec) operates as the public service provider responsible for 

water and electricity distribution, wastewater and rainwater management, 

and public lighting across the Greater Casablanca region, encompassing 

Casablanca, Mohammedia, and Aïn Harrouda. However, this study focuses 

exclusively on Casablanca, as it is the most densely populated and 

urbanized city within the region. 

Figure 1: Greater Casablanca region, Lyonnaise des Eaux de Casablanca’s 
action zone (2019) 

Recently, Moroccan government imposed various water restrictions based 
on the substantial deficit in the last months of 2021 to ensure a rational 
management of the available water resources for the preservation of the 
resource and, to guarantee the supply of drinking water in satisfactory 
conditions in large cities such as Marrakesh and Casablanca (for instance, 
Casablanca registered an increase of 15% of residential consumption for 
the period of 2015-2021). The application of restrictions on the flow of 
water distributed to users was the most severe restrictions among the 
seven restrictions. Severely drier than normal conditions are forecasted at 
most watershed scale. These forecasts currently represent the principal 
concern, as they point to a possible evolution of the ongoing drought into 
an extreme event. Monitoring and managing such evolution in the next 
months are essential for risk and impact assessment, hence the strong need 
for our study. 

2.2 Data 

Water demand is influenced by a wide range of factors, which can generally 

be classified into two main categories: socioeconomic and climatic 

variables. Research indicates that socioeconomic factors primarily drive 

long-term trends in water consumption, whereas climatic variables 

predominantly account for short-term seasonal fluctuations in water 

demand (Miaou, 1990). 

This study utilizes historical data on water consumption, demographic 

factors, and climatic variables. Specifically, the dataset includes monthly 

residential water consumption (m³), mean, maximum, and minimum 

temperatures (°C), wind speed (km/h), relative humidity (%), total 

population, and total rainfall (mm). 

Water consumption data were obtained from Lyonnaise des Eaux de 

Casablanca, population data were sourced from the Haut Commissariat au 

Plan, and meteorological data were collected from the Direction de la 

Météorologie Nationale in Casablanca. The available water consumption 

records span from 2015 to 2021, representing the most comprehensive 

dataset at the time of the study, with the possibility of updates in the future. 

The projected climatic variables for the future period (2021–2040) were 

derived from the IPCC WGI Interactive Atlas: Regional Information 

(Advanced), based on data from the Coupled Model Intercomparison 

Project Phase 6 (CMIP6). These projections were generated for the 

Mediterranean region under the SSP1-2.6 and SSP5-8.5 scenarios. 

3. METHODS AND STUDY DESIGN

In this section, we present the methodological approach applied in this 

study (Figure 2). 
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Figure 2: Method design 

4. REGRESSION ANALYSIS

Regression analysis quantifies the linear relationship between a 

dependent variable (Y) and one or more explanatory variables (𝑋1, 𝑋2, …, 

𝑋m). This technique facilitates the modeling of associations between 

selected variables and enables the prediction of values based on the 

derived equation. When employing the ordinary least squares (OLS) 

method, certain underlying assumptions must be validated to ensure the 

reliability and accuracy of the regression model. 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑚𝑋𝑚 + 𝜀   (Eq. 1) 

• 𝑌𝑖 = observed value of the dependent variable at point/time i.

• 𝛽0 = intercept value, i.e intersection with the y-axis, the value of 𝑌𝑖 
when 𝑋1 = 𝑋2 = ⋯ = 𝑋𝑚 = 0. 

• 𝛽𝑖 = regression coefficient or slope for explanatory variable 𝑋 at point 
i, i.e 

• 𝛽𝑖 = 𝑑𝑌𝑖. 
  𝑑𝑋𝑖 

• 𝜀 error component. 

To ensure the validity of the Ordinary Least Squares (OLS) method, the 

following assumptions must be tested and confirmed: 

• Linearity: The relationship between the dependent and independent

variables should be linear. 

• Random Sampling: The data must be collected randomly to avoid 

bias. 

• No Multicollinearity: Independent variables should not be highly 

correlated with each other 

• Minimal Measurement Error: Explanatory variables should be 

measured accurately. 

• Zero Mean of Residuals: The sum of the residuals should be close to 

zero. 

• Constant Variance: Residuals should have equal variance across all 

levels of the independent variables (homoscedasticity). 

• Normal Distribution of Residuals: Residuals should follow a normal 

distribution. 

• No Autocorrelation: Residuals should not be correlated with each 

other over time. 

4.1 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a multidimensional descriptive 
technique, also referred to as a factorial method, that is applied to 
quantitative variables. Its main objective is to transform a set of correlated 
variables into a new set of uncorrelated variables, known as principal 
components (PC1, PC2, …, PCm). These principal components are derived 
as linear combinations of the original variables (𝑋1, 𝑋2, …, 𝑋m), allowing 
for dimensionality reduction while preserving the essential structure of 
the data. 

𝑃𝐶1 = 𝛼11𝑋1 + 𝛼12𝑋2 … … + 𝛼1𝑚𝑋𝑚 = ∑𝑛  𝑎1𝑗𝑥𝑗 

𝑃𝐶2 = 𝛼21𝑋1 + 𝛼22𝑋2 … … + 𝛼2𝑚𝑋𝑚 = ∑𝑛  𝑎2𝑗𝑥𝑗 

𝑃𝐶i = ∑𝑚  𝛼i𝑗𝑋𝑗, for 𝑖 = 1, … , 𝑚  (Eq. 2) 

𝛼ij are the eigenvalues extracted from the covariance or correlation matrix 
of the data set. 

4.2 Principal Component Regression (PCR) 

In Principal Component Regression (PCR) analysis, regression techniques 
are combined with Principal Component Analysis (PCA) to establish a 
relationship between the dependent variable Y and the transformed 
independent variables, known as principal components (PC1, PC2, …, PCm) 
or (Dim1, Dim2, …, Dimm). This transformation helps address 
multicollinearity issues by replacing the original correlated variables with 
uncorrelated components. The estimated PCR model is then expressed as 
follows: 

𝑌𝑖 = 𝜃0 + 𝜃1𝑃𝐶1 + 𝜃2𝑃𝐶2 + ⋯ + 𝜃𝑚𝑃𝐶𝑚 + 𝜀   (Eq. 3) 

where 𝜃𝑖 are the elasticity’s coefficients and 𝜀 is the error component. 

In order to validate the quality of the estimated model, we used the 
squared correlation coefficient indicator: 

𝑅𝑀𝑆𝐸 =  √∑
(𝑌𝑖 − Ŷ𝑖

2
)

𝑛

𝑛

𝑖=1

where 𝑌𝑖 is the observed value and 𝑌 𝑖 is the predicted or estimated value 
by the model. 

4.3 Model Forecasting 

A regression model utilizing temporal data enables the prediction of future 

values of the dependent variable Y, given that future values of some or all 

explanatory variables X are available for the selected prediction horizon. 

In this study, climate projections from CMIP6 were employed to estimate 

future urban water demand in Casablanca. The developed PCR model was 

applied to forecast average water consumption for the period 2022–2040, 

integrating projected climatic variables to analyze potential trends in 

water demand. 

𝑌2022−2040 = 𝜃0 + 𝜃1𝑃𝐶12022−2040 + 𝑃𝐶22022−2040 + ⋯ + 𝜃𝑚𝑃𝐶𝑚2022−2040 + 𝜀 
(Eq. 4) 

Where; 

𝑌2022−2040 is the average forecasted urban water demand over the period 
2022-2040. 

𝑃𝐶𝑖2022−2040 is the constructed principal component based on CMIP6 
scenarios data. 

5. RESULTS AND DISCUSSION

Following data collection, a correlation coefficient matrix was generated 

using SPSS software, as presented in Table 1. Statistically significant 

correlation coefficients (ρ < 0.05) are marked with stars. These coefficients 

help identify the strength of the linear relationship between variables and 

detect potential collinearity among independent variables, which is crucial 

for ensuring the reliability of the regression model. 
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Table 1: Correlation variables matrix 

Cons Precip Temp_min Temp_max Temp_moy Hum Vitesse_v croi_demo 

Cons 
Pearson 

Correlation 
1 -,487** ,767** ,777** ,779** 0,134 ,509** ,490** 

Sig.(2tailed) 0 0 0 0 0,226 0 0 

Precip 
Pearson 

Correlation 
1 -,581** -,612** -,603** -0,049 -0,025 0,033 

Sig.(2tailed) 0 0 0 0,657 0,819 0,765 

Temp_min 
Pearson 

Correlation 
1 ,959** ,990** 0,155 ,265* 0,006 

Sig. (2-tailed) 0 0 0,159 0,015 0,956 

Temp_max 
Pearson 

Correlation 
1 ,988** -0,028 0,174 0,036 

Sig. (2-tailed) 0 0,803 0,114 0,743 

Temp_moy 
Pearson 

Correlation 
1 0,063 ,227* 0,023 

Sig. (2-tailed) 0,57 0,037 0,836 

Hum 
Pearson 

Correlation 
1 -0,157 -,479** 

Sig. (2-tailed) 0,155 0 

Vitesse_v 
Pearson 

Correlation 
1 ,658** 

Sig. (2-tailed) 0 

croi_demo 
Pearson 

Correlation 
1 

Sig. (2-tailed) 

** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 

From Table 1, Cons exhibited a negative correlation with Precip, which 
aligns with expectations since higher precipitation reduces the need for 
water consumption, leading to lower residential water demand. 
Additionally, significant positive correlations were observed between key 
variables, such as Cons and Temp_moy (0.779), Vitesse_v and croi_demo 
(0.658), and Cons and Vitesse_v (0.509). These findings suggest the 
presence of multicollinearity among the selected variables, which may 
affect the reliability of regression estimates and necessitates the 
application of techniques such as Principal Component Analysis (PCA) to 
mitigate collinearity issues. 

Figure 3: Principal components matrix diagram 

Principal Component Analysis (PCA) was conducted on seven independent 
variables to address multicollinearity and reduce dimensionality while 
preserving the essential information. Each principal component (PC) 
retains the overall variance of the original variables, ensuring that critical 
data patterns are maintained. The eigenvalues corresponding to each 
principal component are presented in Figure 3, which aids in selecting the 
most relevant components and understanding the dataset's structure. 

In the matrix diagram, the size of the colored disk represents the 
contribution of each variable to the corresponding principal component, 
with larger disks indicating a higher contribution. The analysis revealed 
that the first principal component (PC1) was predominantly influenced by 
climatic variables, particularly temperature and precipitation, while the 
second principal component (PC2) was primarily associated with 
demographic factors. 

As shown in Table 2, the first four principal components were retained, 
accounting for 96.33% of the total variance in the dataset. These four PCs 
were selected to develop the Principal Component Regression (PCR) 
model, ensuring a comprehensive representation of the underlying data 
structure while minimizing redundancy. 

Table 2: Variance explained by dimensions (PCs) 

eigenvalue % of Var. Cum. % 

Dim.1 3.4672 49.53 49.53 

Dim.2 1.8847 26.92 76.46 

Dim.3 0.8593 12.27 88.73 

Dim.4 0.5317 7.60 96.33 

Dim.5 0.2414 3.45 99.78 

Dim.6 0.0150 0.21 99.99 

Dim.7 0.0004 0.01 100.00 

Table 3: Loadings of Seven Variables in Principal Components 
(Dimensions) 

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7 

croi_demo 0,083 0,921 0,062 0,132 0,351 0,004 0,000 

Hum 0,055 -0,657 0,718 0,156 0,161 -0,016 0,000 

Precip -0,714 0,153 0,251 -0,633 0,057 -0,002 0,000 

Temp_max 0,971 -0,032 -0,117 -0,179 0,048 -0,087 -0,008 
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Table 3 (Cont.): Loadings of Seven Variables in Principal Components 
(Dimensions) 

Temp_min 0,976 -0,072 0,107 -0,156 0,016 0,083 -0,010 

Temp_moy 0,984 -0,049 -0,002 -0,168 0,026 0,006 0,018 

Vitesse_v 0,290 0,757 0,502 0,068 -0,294 -0,014 0,000 

The influence of each independent variable within a principal component 
(PC) is determined by its component loading value, where higher absolute 
values (closer to 1 or -1) signify a stronger association with the 
corresponding component. The sign of the loading (+ or -) indicates 
whether the relationship between the variable and the principal 
component is positive or negative. As shown in Table 3, the first principal 
component (Dim.1), which accounts for 49.53% of the total variance, 
shows a strong negative loading for Precip (-0.714) and high positive 
loadings for Temp_min (0.976), Temp_max (0.971), and Temp_moy 
(0.984). This suggests that Dim.1 is predominantly influenced by 
temperature variables, reflecting the impact of urban climate conditions. 
The second principal component (Dim.2), explaining 26.92% of the total 
variance, is strongly associated with croi_demo (0.921) and shows notable 
loadings for Hum (-0.657) and Vitesse_v (0.757). Furthermore, the third 
and fourth principal components (Dim.3 and Dim.4) are mainly 
determined by Hum and Precip, respectively. These results indicate that 
the first two components capture the majority of the variance in the 
dataset, with Dim.1 representing climatic factors and Dim.2 reflecting the 
combined influence of demographic and atmospheric variables. 

Table 4: Outcomes of the regression analysis 

Estimate Std. Error t value Pr(>|t|) 

(Intercept) 17.110429 0.064101 266.931 .000 *** 

Dim.1 0.560448 0.034425 16.280 .000 *** 

Dim.2 0.365331 0.046691 7.824 .000 *** 

Dim.3 0.092781 0.069149 1.342 0.184 

Dim.4 -0.008544 0.087902 -0.097 0.923 

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 
0.05 '.' 0.1 ' ' 1 

Residual standard error: 0.5875 on 
79 degrees of freedom 

Multiple R-squared: 0.8059, Adjusted R-squared: 0.7961 

F-statistic: 82.02 on 4 and 79 DF, p-value: < 2.2e-16 

To calculate the principal component (PC) scores, the component score 
coefficients (eigenvectors) were multiplied by the values of the original 
variables. These scores were then used as independent variables in the 
multiple linear regression to identify the most influential PCs for 
predicting water demand. Data from January 2015 to December 2021 were 
utilized to construct the PCR model. As indicated in Table 4, the first four 
principal components (i.e., Dim.1, Dim.2, Dim.3, and Dim.4) accounted for 
approximately 80.59% of the variation in residential water consumption. 
Among these, Dim.1 and Dim.2 were found to be the most significant 
independent variables in the PCR analysis (p-value < 0.000), both having a 
positive impact on urban water consumption. Specifically, an increase of 
one unit in Dim.1 (comprising Precip, Temp_max, Temp_min, and 
Temp_moy) and Dim.2 (comprising croi_demo, Hum, and Vitesse_v) would 
result in a predicted increase of 0.56 Mm³ and 0.3 Mm³ in residential water 
consumption, respectively. The resulting PCR model can be expressed as 
follows: 

𝐶𝑜𝑛𝑠𝑊 = 17.11 + 0.56 × 𝐷𝑖𝑚. 1 + 0.37 × 𝐷𝑖𝑚. 2 + 0.09 × 𝐷𝑖𝑚. 3 − 0.008 × 

𝐷𝑖𝑚. 4   (Eq. 5) 

A comparison between the observed and modeled monthly residential 
water demand using the PCR model is shown in Fig. 4. The simulated values 
for monthly water demand in the residential sector closely align with the 
observed data. However, some discrepancies were noted in certain 
months, which could be attributed to significant fluctuations in 
temperature and rainfall, as well as potential changes in water 
consumption patterns. A daily demand model might capture these 
variations more effectively. Nonetheless, the Root Mean Square Error 
(RMSE) for all forecasted months was only 0.57 for residential water 
consumption, indicating that the developed model is highly accurate and 
suitable for predicting both monthly and overall water demand. 

Figure 4: Comparison of observed and predicted residential water 
demand in millions of cubic meter, Casablanca, Morocco 

The developed models can be utilized to forecast water demand for future 
months in Casablanca, provided the predictor variable data are available 
(Eq. 1). However, if these predictor variables are not accessible, the models 
cannot be applied directly. In this study, the IPCC Sixth Assessment Report 
(AR6) from Working Group I (WGI) interactive atlas—advanced regional 
information—was used to generate aggregated tables for various key 
variables, as defined in the PCR model, for the Mediterranean region. These 
projections were based on near-term scenarios under the weaker forcing 
scenario (SSP1-2.6) and the stronger forcing scenario (SSP5-8.5), 
representing the range of potential future climate trajectories. 

Figure 5: Predicted monthly mean residential water demand in the near 
term (2021-2040) under SSP1-2.6 and SSP5- 8.5 scenarios in Casablanca, 

Morocco. 

The projections obtained from Figure 5 for both scenarios indicate higher 

values compared to the current situation, primarily due to changes in key 

predictor variables defined in the PCR model (Eq. 1), such as temperature. 

The residential water demand will increase from 205 Mm3 (2015-2021) to 

around 234 Mm3 as a mean value over the period of 2021-2040 under the 

strongest scenario. This could capture a serious net increase of urban 

water requirements during each year of the selected forecasted period. 

This growth rate is estimated at around 1.6 Million m3 per year. The 

projection values of SSP5–8.5 scenario is approximately higher than the 

ones from SSP1-2.6 scenario and from the current state except for 

September and December, highlighting the importance that small changes 

on average monthly predicted PCs (Dim.1 and Dim.2) can cause major 

changes in the water demand. In Casablanca, forecasted residential water 

demand peaks during the summer months, and peak summer demand 

occurs in August (21.54 Million m3 under SSP5–8.5 scenario). However, 

what may go unmentioned is the increased variability in summer month 

demands. As we can see from Figure 5, the average predicted residential 

water demand during summer months (June- August) rises by 16% in 

comparison of the average winter months (December-February) 

residential water demand. 
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The ability to accurately forecast water demand is crucial for the effective 

operation of water utilities. The preparedness of the full infrastructure, 

including both water treatment and distribution systems, plays a 

significant role in determining water pricing. Therefore, it is essential for 

water utilities to have access to detailed and precise water demand 

forecasts. Short-term monthly forecasts are particularly important for 

ensuring the efficient operation of the waterworks system, especially in 

minimizing the time that water spends in pipelines and reservoirs, which 

directly affects water quality. In cities like Casablanca and other major 

Moroccan urban centers, this becomes even more critical due to the rising 

water demand observed in recent years. As a result, hydraulic conditions 

in the water distribution system have changed, posing a serious threat to 

water quality, which can vary seasonally. By using accurate forecasting 

models, water distribution processes can be optimized, ensuring proper 

water quality, reducing risks, and enhancing the overall reliability of the 

water supply system, from the water intakes to households. 

6. CONCLUSION

As populations and urban areas continue to grow, effective urban planning 

and sustainable water resource management are becoming increasingly 

essential. This study aims to highlight the importance of predicted urban 

water models in addressing future water scarcity issues, offering valuable 

insights for decision-makers, water managers, and land planners. A deeper 

understanding of the factors that alleviate future water shortages can help 

local and regional planners identify policy solutions that enhance the 

efficiency of water use moving forward. 

Overall, the following key conclusions can be drawn: 

• Seven Seven dependent variables were reduced to two key principal 
components through PCA, which together explained 76.46% of the 
total variance in the original dataset. 

• PCR model shows important accuracy for residential monthly water-
demand forecasting in Casablanca with capacity of prediction near to 
80% (𝑅2 = 0.8). 

• In reference to the developed PCR model, water demand in 
Casablanca city is predicted to increase, reaching a mean value of 234 
millions of cubic meter with a peak water demand of 24.54 millions 
of cubic meter over the period of 2021-2040 under SSP5-8.5 scenario. 

The primary innovative contribution of this work is the development, for 

the first time in Morocco, of a Principal Component Regression (PCR) 

model to forecast water demand in Casablanca. This model incorporates 

predicted variables from the latest phase (Phase 6) of the CMIP, generated 

online via the IPCC WGI Interactive Atlas: Regional Information 

(Advanced) for the Mediterranean region, under the SSP1-2.6 and SSP5-

8.5 scenarios. 

REFERENCES 

Abdul-Wahab, S.A., Bakheit, C.S., Al-Alawi, S.M., 2005. Principal component 

and multiple regression analysis in modelling of ground-level ozone 

and factors affecting its concentrations.Environmental Modelling and 

Software. 20(10): Pp. 1263-1271. 

Adamowski, J., Karapataki, C., 2010. Comparison of Multivariate 

Regression and Artificial Neural Networks for Peak Urban Water-

Demand Forecasting: Evaluation of Different ANN Learning 

Algorithms. Journal of Hydrologic Engineering, 15(10):Pp. 729–743. 

doi:10.1061/(asce)he.1943- 5584.0000245. 

Arandia, E., Ba, A., Eck, B., McKenna, S., 2016. Tailoring seasonal time series 

models to forecast short- term water demand. J. Water Resour. Plan. 

Manag. 142:04015067. 

Babel, M., Gupta, A.D., Pradhan, P., 2007. A multivariate econometric 

approach fo domestic water demand modeling: an application to 

Kathmandu, Nepal. Water Resour Manag. 21(3): Pp. 573–589 

Bakker, M., Van Duist, H., Van Schagen, K., Vreeburg, J., Rietveld, L., 2014. 

Improving the performance of water demand forecasting models by 

using weather input. Procedia Eng. 70: Pp. 93–102. 

Bougadis, J., Adamowski, K., and Diduch, R., 2005. Short-term municipal 

water demand forecasting.Hydrol. Process., 19: Pp. 137-148. 

https://doi.org/10.1002/hyp.5763 

Chen, J., Boccelli, D.,  2014. Demand forecasting for water distribution 

systems. Procedia Eng. 70: Pp. 339–342. 

Donkor, E.A., Mazzuchi, T.A., Soyer, R., Alan Roberson, J., 2014. Urban Water 

Demand Forecasting: Review of Methods and Models. Journal of Water 

Resources Planning and Management, 140(2): Pp. 146–159. doi: 

10.1061/ (asce)wr.1943-5452.0000314 

First, M., Turan, M.E., Yurdusev, M.A., 2009. Comparative analysis of fuzzy 

inference systems for water consumption time series prediction. J. 

Hydrol. 374(3): Pp. 235–241 

Froelich, W., 2015. Forecasting Daily Urban Water Demand Using Dynamic 

Gaussian Bayesian Network.In: 

Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, 

D., 2015. (eds) Beyond Databases, Architectures and Structures. BDAS 

2015. Communications in Computer and Information Science, 521. 

Springer, Cham. https://doi.org/10.1007/978-3-319-18422-7_30 

Ghiassi, M., Zimbra, D.K., Saidane, H., 2008. Urban water demand 

forecasting with a dynamic artificial neural network model. J Water 

Resour Plan Manag. 

Haque, M.M., de Souza, A., Rahman, A., 2017. Water demand modelling 

using inde pendent component regression technique. Water Resour. 

Manag. 31: Pp. 299–312 

Haque, M.M., Rahman, A., Hagare, D., Kibria, G., 2014. Probabilistic water 

demand forecasting using projected climatic data for Blue Mountains 

water supply system in Australia. Water Resour Manag. 28(7): Pp. 

1959–1971 

Herrera, M., Torgo, L., Izquierdo, J., Pérez-García, R., 2010. Predictive 

models for forecasting hourly urban water demand. J Hydrol 387(1): 

Pp. 141–150 

Herrera. M., García-Díaz, J.C., Izquierdo, J., Pérez-García, R., 2011. Municipal 

water demand forecasting: Tools for intervention time series. Stoch. 

Anal. Appl., 29, Pp. 998–1007. 

Hu, S., Gao, J., Zhong, D., Deng, L., Ou, C., Xin, P., 2021. An innovative hourly 

water demand forecasting preprocessing framework with local outlier 

correction and adaptive decomposition techniques. Water. 13: Pp. 582. 

Jain, A., Ormsbee, L.E., 2002. Short-term water demand forecast modeling 

techniques—Conventional methods versus AI. J Am Water Works 

Assoc. Pp. 64–72 

Maruyama, Y., Yamamoto, H., 2019. A study of statistical forecasting 

method concerning water demand.Procedia Manuf. 39: Pp. 1801–

1808. 

Miaou, S., 1990. A class of time series urban water demand models with 

non-linear climatic effects. Water Resour. Res. 26(2): Pp. 169–178. 

Niknam, A., Khademi Zare, H., Hosseininasab, H., Mostafaeipour, A., Herrera 

Fernandez, M.H., 2022. A critical review of short-term water demand 

forecasting tools. What method should I use? 

Sustainability.https://doi.org/10.17863/CAM.84047 

Okeya I, Kapelan Z, Hutton C, Naga D. 2014. Online modelling of water 

distribution system using data assimilation. Procedia Eng. 70: Pp. 

https://doi.org/10.1002/hyp.5763
https://doi.org/10.1007/978-3-319-18422-7_30


Water Conservation & Management (WCM) 9(1) (2025) 113-119

Cite The Article: Ikram Samih, Dalila Loudyi (2025). Predicting Monthly Urban Water Demand In A Changing  

Climate: A Case Study Of Casablanca City, Morocco. Water Conservation & Management, 9(1): 113-119. 

1261–1270 

Oliveira, P.J., Steffen, J.L., Cheung, P., 2017. Parameter estimation of 

seasonal ARIMA models for water demand forecasting using the 

Harmony Search Algorithm. Procedia Eng. 186: Pp. 177–185. 

Pires, J., Martins, F., Sousa, S., Alvim-Ferraz, M., Pereira, M., 2008. Selection 

and validation of parameters in multiple linear and principal 

component regressions. Environmental Modelling and  Software. 

23(1): Pp. 50-55. 

Pahl-Wostl, C., Vörösmarty, C., Bhaduri, A., Bogardi, J., Rockström, J., 

Alcamo, J., 2013. Towards a sustainable water future: shaping the next 

decade of global water research. Current Opinion in Environmental 

Sustainability, 5(6): Pp. 708–714. doi:10.1016/j.cosust.2013.10.012 

Rasifaghihi, N., Li, S., Haghighat, F., 2020. Forecast of urban water 

consumption under the impact of climate change. Sustain. Cities Soc. 

52:101848 

Ristow, D.C., Henning, E., Kalbusch, A., Petersen, C.E., 2021. Models for 

forecasting water demand using time series analysis: A case study in 

Southern Brazil. J. Water Sanit. Hyg. Dev. 11: Pp. 231–240. 

Rockström, J., Falkenmark, M., Allan, T., Folke, C., Gordon, L., Jägerskog, A., 

Kummu, M., Lannersta, M., Meybeck, M., Molden, D., Postel, S., Savenije, 

H., Svedin, U., Turton, A., and Varis, O., 2014. The unfolding water 

drama in the Anthropocene: towards a resilience-based perspective on 

water for global sustainability, Ecohydrol., 7: Pp. 1249–1261, doi: 

10.1002/eco.1562. 

Salloom, T., Kaynak, O., He, W., 2021. A novel deep neural network 

architecture for real-time water demand forecasting. J. Hydrol. 

599:126353. 

Sardinha-Lourenço, A., Andrade-Campos, A., Antunes, A., Oliveira, M., 2018. 
Increased performance in the short-term water demand forecasting 
through the use of a parallel adaptive weighting strategy. J. Hydrol. 
558, Pp. 392–404. 




