

Water Conservation & Management (WCM)

DOI: http://doi.org/10.26480/wcm.01.2025.155.164

ISSN: 2523-5664 (Print) ISSN: 2523-5672 (Online) CODEN: WCMABD

RESEARCH ARTICLE

TRANSFORMING WATER MANAGEMENT WITH IOT-BASED SMART SYSTEMS AND IOB-DRIVEN USER ENGAGEMENT

Suraj Bimal Sharma^a, Tarun Madan Kanade^{b*}, Amit Arun Medhekar^c, Tushar K. Savale^d, Deepali Pulekar^e

- ^aAssistant Professor, Arihant Institute of Business Management, Savitribai Phule Pune University, Pune, India
- ^bFaculty of Management, Symbiosis Institute of Operations Management, Symbiosis International University, India
- Incharge Director, Professor, Arihant Institute of Business Management, Savitribai Phule Pune University, Pune, India
- ^aAssistant Professor, Balaji Institute of Modern Management, Sri Balaji University Pune, India
- ^eAssociate Professor, Balaji Institute of Management and Human Resource Development, Sri Balaji University Pune, India
- *Corresponding Author Email: tarun.kanade@siom.in

This is an open access journal distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

ARTICLE DETAILS

Article History:

Received 23 November 2024 Revised 18 December 2024 Accepted 03 February 2025 Available online 15 March 2025

ABSTRACT

Introduction: Water conservation is a pressing global issue due to urbanization, climate change, and increasing demand. Traditional water management systems rely on outdated, manual monitoring methods that are ineffective and reactive. A more proactive approach integrating the Internet of Things (IoT) and the Internet of Behavior (IoB) can optimize water usage and encourage sustainable consumption. Objectives: This study evaluates the impact of IoT-enabled real-time monitoring and automation on water conservation and explores how IoB influences user behavior through personalized feedback, incentives, and gamification. The aim is to propose an integrated IoT-IoB framework for sustainable water management. Results and Discussion: Experimental data demonstrate that IoT-driven smart sensors and automated leak detection systems significantly reduce water waste, improving distribution efficiency. IoB-based behavioral interventions, such as real-time feedback and gamification, enhance conservation efforts by promoting responsible water use. Case studies, including Singapore's Smart Water Grid and Cape Town's crisis response, highlight the effectiveness of IoT-IoB integration compared to traditional methods. Conclusion: Integrating IoT and IoB transforms water management by combining real-time automation with behavioral insights. This approach enhances efficiency, scalability, and long-term sustainability. Future research should refine data analytics and policy frameworks to optimize global water conservation strategies.

KEYWORDS

Water Conservation, Smart Water Management, Internet of Things (IoT), Internet of Behaviour (IoB), Real-Time Monitoring, User Engagement, Sustainable Water Usage

1. Introduction

Water scarcity and inefficient management of water resources have become pressing global challenges due to rapid urbanization, climate change, and increasing freshwater demand. Conventional water management approaches often struggle to address these issues effectively, leading to resource depletion, excessive consumption, and infrastructure strain. Climate change further exacerbates the situation by altering precipitation patterns, increasing drought frequency, and contributing to water pollution. Consequently, the urgent need for innovative and sustainable water management solutions has never been greater, particularly as urban populations and industrial requirements continue to

The scientific significance of this study lies in its exploration of novel technological and behavioral approaches to water conservation. Recent advancements in smart technologies, such as real-time monitoring systems, smart meters, and Internet of Things (IoT)-enabled automation, have significantly enhanced water distribution efficiency and leak detection. However, technological solutions alone are insufficient to ensure long-term sustainability. Human behavior is a critical determinant of water conservation outcomes, highlighting the necessity for strategies

that actively engage users in responsible consumption practices.

In this context, the Internet of Behavior (IoB) emerges as a transformative concept with the potential to bridge the gap between technology and behavioral science in water management. IoB leverages data analytics to deliver personalized feedback, incentives, and behavioral nudges that encourage sustainable water use. By integrating IoB with IoT technology, a more interactive and efficient water management framework can be established. This study aims to investigate the potential of an IoT-IoB integrated framework to drive innovation in water conservation by optimizing resource utilization and promoting proactive user engagement. Through this approach, the research contributes to the advancement of sustainable water management practices, addressing both technological and behavioral dimensions of conservation. (Ahmad Ferdowsi, 2024)

1.1 Problem Statement

Traditional water management methods are ineffective and reactive. Traditional procedures are laborious and error-prone because they need human monitoring and assessments. Water loss from leaks, misuse, and poor irrigation systems remains a major issue. Regulations rather than direct engagement hinder the efficacy of many water-saving measures

Quick Response Code Access this article online

Website: www.watconman.org DOI:

10.26480/wcm.01.2025.155.164

over time.

Sustainable water management starts with changing people's behavior. Many people don't know how much water they consume or its immediate effects. Even with conservation suggestions, lack of incentives and real-time feedback leads to low compliance. A unified system should motivate people to use less water and improve their behavior, not only monitor it.

1.2 Purpose and Objectives

This article examines how smart water management systems based on the Internet of Things (IoT) and user interaction spurred by IoT may innovate water saving. The Internet of Things (IoT) enables resource efficiency, leak detection, and automatic water consumption monitoring. Behavior insights from the Internet of Behaviors (IoB) may alter water use.

The objectives of this study are:

- Assess the impact of IoT on water conservation via real-time monitoring and data-driven decision-making.
- ii. Examine how IoB influences user behavior via individualized feedback, incentives, and engagement techniques.
- iii. To offer an IoT-IoB platform for sustainable water management.

This strategy may minimize water waste, improve conservation, and ensure long-term water resource management by merging technology and behavioral science.

2. LITERATURE REVIEW

2.1 IoT in Water Management

The Internet of Things has revolutionized water management by automating, monitoring, and optimizing water supplies. Together, leak detection systems, automatic valves, water meters, smart sensors, and the IoT monitor use, waste-cutting potential, and inefficiency. The detailed water use data these systems give may benefit homeowners, businesses, and utilities.

Smart metering is a fundamental IoT water-saving technique. It lets users track their water consumption and get alerts for unexpected use. Pressure

monitors and flow sensors in IoT-based leak detection systems discover irrigation network and pipeline breaches, reducing water loss. Studies suggest the IoT may assist regulate water resources. Singaporeans have reduced water waste due to IoT water meters' real-time feedback. SmartWater4Europe, another EU initiative, uses IoT and big data analytics to enhance city water delivery. (Abebe, 2024)

2.2 Internet of Behaviour (IoB)

The Internet of Behavior (IoB) investigates user behavior to improve the IoT. IoB analyzes IoT data to deliver personalized insights, comments, and incentives for sustainable practices.

IoB might be used to provide water conservation behavioural nudges. If a house's water usage is high compared to the area, IoT notifications might suggest reducing shower times or watering less. Gamification to reduce water usage is another benefit of IoB.

IoB is useful in many resource management areas. Example: The Google Nest thermostat analyzes user activity data to optimize energy consumption and reduce power use. Wearable devices that monitor user behavior and offer rapid feedback to improve lifestyle choices enable IoB be utilized in healthcare. All these applications demonstrate the IoB's ability to modify people's water saving habits. (Mohd Javaid, 2021)

2.3 Integration of IoT and IoB

Water conservation is strengthened by combining IoT and IoB, which combines real-time data with behavioral insights. IoT accumulates this data, whereas IoB analyzes consumption data to affect user behavior. To deploy a smart water management system, IoT sensors may detect excessive water use. Then, IoB methods like social comparisons or alerts may encourage conservation.

Other industries incorporated IoT and IoB effectively. Behavioral insights and consumption patterns influence energy management smart network power distribution. Hospital IoT fitness trackers track and advise patients on workouts. Water management synergy may boost conservation by synchronizing technology and behavior. (Lakshmi Haritha Medida, 2025)

2.4 Research Gap

Table 2.4: Research Gap In The Industry								
Study Area	Study Title/Source	Year	Reference	Key Findings	Limitations Identified			
IoT in Water Management	SmartWater4Europe Initiative (EU Project)	2021	(ACCIONA, 2021)	IoT-enabled sensors, smart meters, and big data analytics improve water distribution efficiency and reduce waste in urban areas.	Focuses mainly on technology implementation; lacks integration of behavioral insights for sustained conservation practices.			
	Application of IoT in Residential Water Management	2016	(Wadekar et al., 2016)	IoT sensors and smart metering provide real-time monitoring and leakage detection, improving water conservation in households.	Limited user engagement strategies; does not explore long- term user adoption influenced by IoB.			
	Singaporean IoT-Based Water Meters	2024	(Kabaso, 2024)	Real-time feedback from smart meters successfully reduced water waste in Singapore.	Does not assess the behavioral factors influencing long-term compliance.			
	IoT-Based Leak Detection in Urban Pipelines	2023	(Suan Lee, 2023)	IoT systems equipped with pressure sensors and flow meters detected leakages in real time, significantly reducing water loss in urban pipeline networks.	Focuses on infrastructure improvements; limited exploration of user engagement to reduce individual consumption.			

Table 2.4 (Cont.): Research Gap In The Industry									
	IoT in Smart Irrigation Systems	2020	(Laura García, 2020)	IoT-enabled automated irrigation systems enhanced water efficiency in agricultural fields by adjusting water use based on real-time environmental conditions.	Limited application in non-agricultural contexts; does not explore behavioral strategies for adoption by farmers.				
IoB in Resource Management	Internet of Behavior: Behavioral Nudges for Resource Conservation	2023	(Clement Carrel clement, 2023)	IoB uses data-driven feedback and gamification to influence user behavior, promoting resource conservation (e.g., reducing energy consumption).	Primarily focused on energy conservation, with limited applications in water resource management.				
	Google Nest Thermostat	2015	(Walton, 2015)	IoB-based personalized feedback and energy usage data reduced energy consumption, showcasing the potential of behavior- driven interventions.	Focused on energy use, not water management; lacks analysis of long- term impacts of behavior changes.				
	Wearable Devices for Behavioral Insights in Healthcare	2020	(Ranganathan Chandrasekaran, 2020)	IoB-enabled wearables provided instant feedback to users, promoting healthier lifestyle choices and behavioral change through personalized suggestions.	Focused on healthcare; limited direct relevance to water management and conservation practices.				
	Behavioral Science for Urban Water Conservation	2022	(Bipasha Singha, 2022)	Explored behavioral interventions to reduce urban water consumption, using nudges such as social comparisons and realtime feedback.	Did not integrate IoT technology to enhance behavioral interventions for water conservation.				
IoT and IoB Integration	Integration of IoT and IoB in Smart Resource Management	2024	(Taoufik Benhmad, 2024)	IoT collects consumption data while IoB provides behavioral insights to encourage conservation; synergy enhances sustainable resource management in various industries.	Limited case studies in water management; lacks real-world implementation data and analysis of user compliance patterns.				
	IoT-IoB Synergy in Hospital Fitness Trackers	2024	(Carolina Del-Valle-Soto, 2024)	IoT devices monitor activities, while IoB methods provide feedback and suggestions to patients, improving health outcomes through behavior modification.	Focused on healthcare applications, with no direct exploration of water resource management systems.				
	IoT-IoB in Household Water Management	2022	(Ahmed S. Ali, 2022)	Proposed a unified IoT-IoB system for household water conservation, using real-time data and behavioral nudges to reduce excessive water consumption.	Mostly theoretical; lacks experimental validation and long-term evaluation of user engagement and system scalability.				
	Smart City Water Management Using IoT-IoB	2024	(ALSHAMI, 2024)	IoT-IoB integration enabled real-time monitoring and user behavior analysis in urban water systems, significantly reducing water wastage.	Focused on urban systems; limited consideration of rural or agricultural water management challenges.				

3. METHODOLOGY

The recommended approach optimizes water savings using Internet of Things-based water management and user engagement tactics. The main system parts:

Sensors and analytics from the Internet of Things have transformed water management. Real-time water usage monitoring requires smart meters, flow sensors, leak detection, and accurate water consumption statistics. For resource optimization and early detection, these IoT devices gather vital data.

This system requires data transfer and communication. NB-IoT, LoRaWAN, and Wi-Fi enable devices to broadcast data to the cloud. This connection easily connects devices to monitor and regulate water use.

When data is entered, cloud and edge processing commence. Using water use trends and abnormalities, this high-tech device may give vital information. Early leakage and misuse detection enhance water resource management and lowers waste. (Evangelos Syrmos, 2023)

Behavioral Internet of Behaviors (IoB) analytics increase system usability. Analytics leverage IoT device behavioral data to deliver real-time warnings, targeted suggestions, and feedback. This approach informs clients about water consumption and gives efficiency advice for sustainable use.

Finally, water management is complete with IoT sensors, powerful connections, sophisticated analytics, and behavioral insights. This method optimizes resource allocation and encourages water conservation via environmental awareness. The IoT-IoB gap is closed to support long-term water conservation. Water efficiency is ensured. (Mohd Javaid A. H., 2022)

3.1 Data Collection and Analysis

Water flow, leak detection, and peak consumption hours are collected via connected equipment. Regular data analysis using machine learning identifies inefficiencies and projects consumption patterns.

IoB water consumption data indicate user behavior and guide research. Research like this is important for sustainability. Common peak-hour water overuse strains supply. Feedback systems highlight the need of real-time advice as conservation alerts affect behavior. Comparing water usage to the community is an advantage of social comparisons. The contrast helps clients notice and change habits.

Water conservation programs may be improved with personalized advice from several data sources. Customised insights may help customers understand their consumption patterns, driving improved behaviour and decisions. Results of a comprehensive approach that promotes individual responsibility, resource management, and long-term sustainability goals for community water conservation initiatives. (João Alves Coelho, 2020)

Real-time feedback systems encourage water conservation, influencing user behavior. Mobile apps and dashboards provide visual data, tailored water conservation suggestions, and timely warnings that benefit customers. Customers can quickly adapt to consumption trends since they always know.

Gamification and incentives increase user engagement by rewarding low-consumption consumers. These strategies encourage devotion and achievement by making conservation a fun activity. Social comparison insights and color-coded reminders encourage resource conservation. When utilization is green, everything is well; when it is red, something is wrong and must be fixed. Comparing their consumption to the group average inspires more sustainable behavior. These feedback mechanisms provide a water conservation framework. Aggregating human behavior data with technology automation ensures long-term water savings achievement. This is done by promoting user participation and resource efficiency. (Stefania Anna Palermo, 2022)

4. PROPOSED FRAMEWORK

The proposed architecture uses IoB concepts to modify user behavior and IoT technology for real-time water monitoring. User behavior insights, data analytics, and smart sensors help this system save water.

4.1 Architecture of IoT-IoB-Driven Water Management System

4.1.1 Real-Time Monitoring and Control through IoT

The technology uses IoT infrastructure to accurately monitor and manage water consumption. In the middle are smart meters and sensors for water usage, leak detection, and real-time pollution assessment. These gadgets give critical information to immediately identify issues and inefficiency.

IoT devices may broadcast real-time data to a central system via LoRaWAN, NB-IoT, and Wi-Fi. This link ensures fast data updates and regular monitoring, which determine managerial effectiveness. Cloudbased storage and analytics manage and analyze data. These devices may detect discrepancies in consumption habits.

Shut-off valves, smart irrigation systems, and other automatic controls save waste. These devices analyze data to reduce water use.

Customers make wise decisions with real-time water use data. Automation, data processing, and real-time monitoring are needed. The comprehensive approach eliminates water waste and encourages sustainable use, boosting resource efficiency and sustainability. (Sapra, 2023)

4.1.2 Feedback Loop Integrating IoB for Behavior Modification

Water-saving advice is personalized via the Internet of Behaviors (IoB). Personalised alerts and real-time data help consumers save water and make educated choices. Social comparison platform customers restrict their usage after seeing how they compare to similar companies. It encourages responsibility and competitiveness.

Color-coded warnings and automatic behavioral nudges enable this. Red warnings indicate high usage; green indicates optimum conservation. Visuals enhance understanding and correction. All generates dynamic concepts. They use behavior and reaction analysis to serve consumers personally.

Besides temporary solutions, the system leverages IoT-driven technology to maintain individual and community water consumption. (Mohd Javaid A. H., An extensive study on Internet of Behavior (IoB) enabled Healthcare-Systems: Features, facilitators, and challenges, 2022)

4.2 Features and Functionalities

4.2.1 Leak Detection and Alerts

Real-time leak detection reduces water waste and improves management. Leaks are detected using AI anomaly detectors that detect unexpected water flow fluctuations. Live trend and deviation analysis detect problems before they worsen.

Mobile applications or SMS notifications notify users of these irregularities, allowing them to rectify them promptly. Due to real-time communication, leaks are fixed instantly, saving water. The device automatically shuts off water flow to avoid damage and loss from big leaks.

This feature's smart detection, timely alarms, and automation save water waste, maintenance, and structural damage. This provides inexpensive, long-term water management. (KaaloT, 2024)

4.2.2 Personalized Water Usage Recommendations

User behavior and environmental circumstances determine water conservation recommendations to improve water use. Al-powered computers analyze consumption data to find trends, inefficiencies, and targeted efficiency improvements. With this personalized approach, every user believes the principles are relevant and doable.

Dynamic reports alert consumers of issues. Simple studies try to encourage water conservation. The method offers seasonal recommendations for year-round water conservation to match changing water requirements and climates.

Access to specialized data increases user engagement and proactive preservation. Customers save water and adopt sustainable behaviors with this adaptable strategy, which helps manage resources and preserve the environment. (A.Shaji George, 2023)

4.2.3 Gamification and Rewards for Sustainable Behavior

Sustainable water conservation is more entertaining and rewarding when gamified. Water-saving points encourage consumers to conserve. People work more when they switch incentives to points.

Leaderboard rankings show users their peers' performance, encouraging community-driven conservation. Actively pursuing similar objectives promotes responsibility and healthy competition. Better still, challenges and badges acknowledge sustainable goals or gradual consumption reduction. These success-recognizing devices promote progress.

Awards, competition, and recognition incentivize people to be environmentally conscious via gamification. This adaptable method conserves water and inspires environmental consciousness. (Weng Marc Lim, 2024)

4.3 Scalability and Adaptability

4.3.1 Application Across Different Contexts

Structure may be changed for numerous situations:

In suburban and urban homes, clever water management systems save water.

The IoT improves industrial and commercial water utilization. Smart irrigation systems change watering depending on soil moisture and weather. The flexible technology guarantees broad use.

The Internet of Things and Internet of Business with real-time monitoring, behavioral analytics, and engagement tools alter water management. Automatic leak detection, individualized training, and gamification promote water saving. This technology is future-proof for global water conservation because to its scalable and adaptive design. (OptConnect, 2024)

4.4 Suggested Framework to Industry

4.4.1 Real-Time Monitoring and Data Collection

The system tracks water use, pressure, flow, and quality quickly using smart meters and other IoT devices. These sensors continuously monitor system operation and water use. For reliable monitoring, all data is transferred to a central platform without error. Users and administrators may now monitor concerns in real time, improving productivity, saving money, and maintaining water quality.

4.4.2 Cloud Processing and Data Analytics

The system processes real-time IoT data in a centralized cloud. This platform is crucial for storing, organizing, and accessing massive amounts of data. Real-time data analysis provides a complete view of water use and system performance.

The majority of modern AI systems use data analysis. These algorithms can detect user behavior and consumption trends. Unexpected use spikes may indicate inefficiency, leakage, or anomalies. Early identification of these abnormalities allows the device to take immediate action to limit water loss and damage.

AI-driven analytics and cloud computing provide precise, proactive water management. Informing users and management helps them make smart decisions that enhance system performance, preserve resources, and decrease consumption. Better water consumption habits boost operational efficiency and help long-term sustainability efforts, improving operational performance.

4.4.3 IoB-Driven Behavioral Insights

IoT device user behavior is assessed using Internet of Behaviors principles. This data shows water usage and key reactions. Learning about water sustainability strategies changes the system's approach.

This research offers personalized use optimization strategies. Engagement increases from real-time usage statistics, community benchmark comparisons, and conservation objective progress updates. This shifting knowledge encourages customers to develop better practices to maintain benefits.

The method uses IoB data and individualized instruction for sustainable resource management and long-term behavior modification. Users can greatly improve water conservation.

4.4.4 Leak Detection and Automated Alerts

Its high-tech sensors identify leaks and pipe breaks in real time. These sensors constantly monitor flow patterns and abnormalities to discover issues quickly.

The technology alerts immediately to irregularities or leaks. SMS and smartphone updates are sent. These alerts may be responded to instantly, decreasing risk and water waste.

In a catastrophic loss, the system's automatic shut-off valves may temporarily cease water. This proactive approach cuts costs, optimizes resources, and protects infrastructure.

Real-time monitoring, automated warnings, and responsive controls reduce water wastage and provide sustainable water management.

4.4.5 Personalized Water Usage Recommendations

It analyzes data to provide personalized water-saving tips. Historical data and user behavior are analyzed to find inefficiencies and provide specific solutions.

These suggestions change with user settings and surroundings. Seasonal differences like summer water requirements or behavioral changes like greater intake at certain times of day may explain such variances.

The technology's advice and tips assist users adopt sustainable behaviors and make water use choices. Resource conservation is improved by this individualized method.

4.4.6 Gamification and Incentive Mechanisms

Gamification promotes water conservation and upkeep. Water conservationists may get points or badges. These incentives boost water

Social comparisons inform clients how their spending compares to neighbors or similar families, another crucial aspect. Environmentalism and friendly competition are promoted. Group efforts like water-saving objectives foster cooperation.

Gamification and incentives encourage long-term water conservation by entertaining and engaging users.

4.4.7 Predictive Analytics and Forecasting

Artificial intelligence predicts water use using real-time and historical data. This comprehensive forecasting tool identifies consumption patterns, seasonal changes, and demand spikes for resource management and planning.

The device reliably predicts future water demand to enhance distribution and maximise resource efficiency. Early detection helps administrators prevent shortages and overuse.

This forecasting ability improves water management by decreasing waste, managing resources, and encouraging sustainability.

4.4.8 Scalability and Adaptability

The system is versatile and extensible for agricultural, industrial, and residential use. Its modular architecture suits residences, industrial buildings, and large farms.

The system may also accommodate different infrastructure, environments, and water management demands. It may enhance urban water networks or rural irrigation.

Many companies use and support sustainable water management strategies since the system is adaptable and works in any context.

4.4.9 Security, Privacy, and Compliance

Strong system encryption safeguards data transport and storage. Protects client data and privacy. GDPR or related privacy laws assure legal and ethical data management.

The technology processes anonymized data for user trust. Your personal data will be kept private and used only as authorized. These security guidelines protect user data and promote openness. This ensures sustainable water resource management.

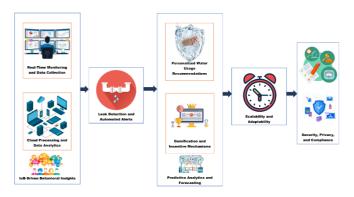


Figure 1: Integrated Smart Water Management Framework (ISWMF): A Sustainable Solution for Efficient Water Resource Management.

A Suggested Framework for the Industry

The Integrated Smart Water Management Framework (ISWMF) uses IoT, AI, and IoB to manage water sustainably. The paradigm assumes real-time monitoring, data-driven insights, and behavioral interventions may improve water conservation and resource efficiency. Water use, flow, pressure, and quality are monitored continuously via IoT devices. A cloud platform processes real-time data from these devices using AI algorithms for advanced analytics. The system detects irregularities in consumption patterns and fixes leaks and waste to optimise resource allocation.

Internet of Behaviors (IoB) principles personalize feedback, give customized water-saving advice, and encourage sustainable habits via gamification and prizes to engage users. By encouraging long-term conservation behaviors, behavioral insights help communities take responsibility for water resources. Scalability and versatility enable the framework to function in residential, industrial, and agricultural settings. Its strict security and compliance assure data privacy and ethics.

ISWMF addresses water shortage using technology, analytics, and behavioral science to promote sustainability and resource efficiency.

5. CHALLENGES AND SOLUTION

Using IoT and IoB in water management offers pros and cons. For proper implementation and long-term maintenance, these issues must be resolved. Some of the most pressing issues and solutions are:

5.1 Technical Challenges

5.1.1 Data Security and Privacy Concerns

Internet of Things devices need real-time data collection, storage, and analysis. However, moving and storing sensitive data like water use patterns may raise privacy and security concerns. Users may lose faith in a firm if a cybersecurity breach exposes private data or disrupts operations. (Lo'ai Tawalbeh, 2020)

Proposed Solution

- Use end-to-end encryption to safeguard data during storage and transmission.
- ii. Use multi-factor authentication (MFA) to safeguard access to mission-critical systems.
- iii. Protect user privacy by using anonymizing procedures while managing their data.
- Regular security audits and vulnerability testing identify and resolve concerns.

5.1.2 Connectivity Issues in Remote Areas

IoT devices must be always linked to deliver data to mainframes for processing. Power shortages or internet issues may cause the system to malfunction in remote areas. Control and monitoring in real time will be less effective. (Shams Forruque Ahmed, 2024)

Proposed Solution

- Use low-power wide-area networks (LPWAN), including LoRaWAN or NB-IoT, which have battery efficiency.
- Use edge computing to process data locally, hence reducing dependency on cloud connectivity.
- Depend on solar-powered Internet of Things (IoT) devices to guarantee continuous functioning in places with erratic electricity supplies.

5.2 Behavioral Challenges

5.2.1 Resistance to Change in Water Usage Habits

People may resist changing their water consumption practices despite statistics and recommendations. This doubt may be due to ignorance or the assumption that changing behavior is difficult. (GREGG SPARKMAN, 2021)

Proposed Solution

- Create community-led water conservation awareness projects to educate people.
- ii. Highlight the environmental and economic benefits of conserving resources like water.
- iii. To promote adoption, collaborate with local authorities or influential persons using respectful means.

5.2.2 Ensuring Sustained User Engagement

If clients lose interest in the system or don't instantly benefit from changing their behavior, it may be difficult to keep their attention. (Michael P. Kelly, 2016)

Proposed Solution

- Use gamification elements like points, leaderboards, and awards to keep users engaged and motivated.
- ii. Offer long-term incentives for eco-friendly behavior, including tax rebates or utility reductions.
- $iii. \quad Use \ personalized \ alerts \ to \ encourage \ healthy \ habits \ and \ progress.$
- iv. To retain interest, often add new features or objectives to the system.

5.3 Additional Considerations

5.3.1 Integration and Scalability

Building the system in urban, industrial, and rural regions without affecting infrastructure is difficult.

Proposed Solution

- $i. \hspace{0.5cm} \hbox{Create adaptable systems that adapt to changing circumstances}.$
- ii. Foster stakeholder collaboration to develop water management system integration guidelines.

5.3.2 User Trust and Transparency

Technology like IoT and IoB need trust before deployment. Data security and accountability are user goals.

Proposed Solution

- i. Engage others in decision-making and practice open data usage.
- Share often reports and success stories to show the influence of the system.

Targeted solutions may solve technical and behavioral issues in IoT and IoB water management systems. Data security, connection, user involvement, and scalability may help communities save water. These issues may become water-conscious opportunities with technology, education, and incentives.

6. CASE STUDIES AND APPLICATIONS

IoT and IoB have improved water management for numerous sectors. Here are various instances of IoT-dependent water management systems, hypothetical scenarios integrating the two, and a pilot project to suit regional needs.

6.1 Singapore's Smart Water Grid

Singapore's water distribution system is monitored and controlled by the PUB's Smart Water Grid. This grid includes IoT. Water is effectively used by this computerized system, promoting sustainability.

The Smart Water Grid's sensors and meters measure water pressure, flow, and quality in real time. Constant monitoring delivers precise system tracking and fast anomaly detection. We use AI and ML to process data. These approaches find leaks, water distribution difficulties, and system abnormalities. Our prediction skills prevent problems from escalating.

Automatic alarm systems notify authorities of leakage and illegal use. Fast reflexes reduce water loss and ensure service continuity. Integration of automation and real-time analytics boosts operational efficiency.

Smart Water Grid improvements are significant. Leakage and illicit usage of non-revenue water are reduced, enabling better resource management. Customized water use statistics and insights help customers make better decisions and be more mindful. More effective resource usage promotes Singapore's long-term water conservation and sustainable water management goals.

This groundbreaking research illustrates how technologically sophisticated solutions may revolutionize water distribution networks, improving their resilience and environmental friendliness in a water-scarce society. (Public Utilities Board Singapore, 2016)

6.2 Cape Town Water Crisis Response (South Africa).

In anticipation of "Day Zero," Cape Town used IoT technology to measure water consumption and promote conservation. These gadgets were essential for crisis management and water conservation.

Residential smart meters track water consumption in real time. These meters allowed authorities and homeowners to measure water usage and identify water-saving areas. Additionally, a smartphone app displayed daily water consumption, set use goals, gave real-time comments, and offered water-saving tips. Because their actions were so obvious, families were able to change and reduce their garbage output.

The city also used IoT behavioral data to conduct public awareness efforts. Addressing specific water usage patterns, raising awareness of the problem's importance, and providing water-saving suggestions were attempted.

They had a big impact. Cape Town's water decrease delayed "Day Zero" and provided much-needed respite. Many people continued to use sustainably after the crisis, indicating that it changed their habit.

This illustrates how successfully IoT-driven solutions manage water shortages. Long-term resource management is improved by behavioral insights, user input, and real-time monitoring. (ZiervoGeL, 2019)

6.3 IBM Green Horizon Project (China)

For its Green Horizon project in China, IBM developed an IoT-driven water management system to address water quality and resource economics challenges. This new technology improves water management using IoT sensors, predictive analytics, and environmental monitoring.

The technology produces important real-time data from river and lake water quality sensors. Early pollution identification helps authorities concentrate cleanup efforts, protecting water resources faster. Predictive analytics optimize resource allocation and water demand and supply, making the system more competent. You can be confident water will be delivered properly, saving waste and meeting all your needs.

Industrial water consumption is monitored via IoT devices, helping meet environmental requirements. These devices highlight inconsistent or excessive water usage to increase transparency and hold industrial users accountable. IBM's innovations have changed several industries. Fast detection and remediation have dramatically improved water quality at monitored areas. Openness and regulatory compliance monitoring have made industrial users more accountable. This initiative stresses technology solutions to pressing environmental issues, a long-term water resource management plan, and stakeholder accountability. (IBM Research, 2015)

6.4 Hypothetical Scenarios Integrating IoT and IoB

6.4.1 Smart Residential Community

A suburban house neighborhood has IoT-connected smart meters to monitor water usage. One may monitor consumption patterns in real time. These smart meters are linked to a smartphone app that promotes water saving via IoB.

The software analyzes water consumption trends to suggest improvements and delivers personalized feedback. It suggests homeowners use more efficient irrigation or shorter showers to conserve water. Gamification pays families with the lowest water usage to increase participation. Public acknowledgment and energy bill reductions foster healthy competition in the community.

This method yielded considerable results. More residents are using the service because they monitor and conserve. More neighbors becoming ecologically aware has reduced water waste. Technology and behavioral insights may help the environment by creating a water-saving culture via gamified incentives, actionable feedback, and real-time monitoring. (I. Andrić, 2022)

6.4.2 Agriculture in Arid Regions

In arid agricultural regions, IoT sensors detect soil moisture, weather, and irrigation. We use real-time data and IoB analytics to improve agricultural productivity and minimize water use.

IoB insights provide optimal irrigation techniques based on weather projections and crop water needs. This ensures water efficiency, which boosts crop growth and reduces water waste. Farmers get mobile notifications with water-saving tips, allowing them to choose the best solutions for their scenario. By rewarding sustainable behavior, the system encourages mulching to retain soil moisture and drip watering.

Life has altered for many. Water efficiency has improved, helping farmers save resources and alleviate water stress. Farmers have gained and food security improved due to increased agricultural output. The technology solves dry land water shortages and promotes sustainable agriculture using behavioral analytics and the IoT. (David Pascoal, 2024)

6.5 Pilot Project Proposal: IoT-IoB Water Management in Urban India

Context and Objective

Due to excessive consumption, poor public knowledge of water conservation, and substantial non-revenue water losses, Indian cities face water management issues. IoT and IoB will be used in the pilot project to solve these difficulties in a medium-sized city.

Proposed Implementation

6.5.1 IoT Deployment

Implement the Internet of Things by installing smart meters in 1,000 houses to measure water consumption in real-time (6.5.1). Municipal pipeline leak-detection devices might drastically minimize water loss.

6.5.2 Behavioral Insights (IoB)

A user-specific mobile app provides tailored feedback, conservation guidance, and progress updates. Gamification, like water-saving initiatives, engages consumers.

6.5.3 Public Awareness Campaigns

Projects to raise issue awareness Create ads that match consumers' consumption behaviors using IoB data. Promote environmental practices among local companies and schools.

6.5.4 Incentives

Users should be financially rewarded for achieving conservation targets, such as decreased water costs

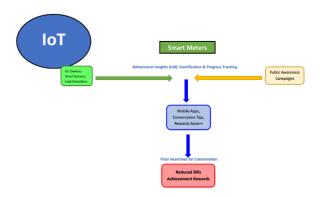


Figure 2: Leveraging Technology and Behavioural for Sustainable Water Usage A Suggested framework for the industry

Expected Outcomes

- i. The water usage of participating households will decrease by 20- 30%.
- Identifying key characteristics that promote or hinder sustainable water usage.
- iii. This building might be enlarged to be used in other cities.

These speculative scenarios highlight how the Internet of Things and the Internet of Business might totally change the water management sector. Crisis Response in Cape Town and the Smart Water Grid in Singapore show how IoT devices improve conservation. Pilot projects and hypothetical scenarios combining the IoT and the BIM show how technical and behavioral problems may be resolved, therefore opening the path for scalable, sustainable solutions for water management.

6.6 Experimental Setup: A Suggestion to Industry

6.6.1 Purpose of the Experiment

The primary objective of the experiment is to evaluate the effectiveness of an integrated IoT-IoB system in reducing water consumption and improving conservation behaviors. The study aims to quantify the impact of real-time monitoring, personalized feedback, and behavioral incentives on user engagement and sustainable water usage.

6.6.2 Experimental Setup

The experiment will be conducted in a controlled environment, such as a residential community or institutional facility, where IoT-enabled smart meters and behavioral analytics tools will be deployed. The setup includes:

- Smart Water Meters: Installed in households or buildings to track real-time water usage.
- Leak Detection Sensors: Identify and report anomalies in water consumption.
- IoB-Based Feedback Mechanism: Mobile applications and digital dashboards providing usage insights, conservation tips, and gamification elements.
- Behavioral Interventions: Social comparisons, color-coded alerts, and reward-based incentives for sustainable usage.

6.6.3 Experiment Index and Data Collection

The following metrics will be monitored to assess the system's effectiveness:

 Water Consumption Trends: Measured before and after implementing IoT-IoB interventions.

- Leakage Incidences: Number and duration of detected leaks and their impact on water savings.
- User Engagement Levels: Interaction with feedback mechanisms, including response rates to alerts and gamification participation.
- Behavioral Adaptation: Changes in individual water usage patterns, including reduction in consumption and adherence to conservation recommendations.

6.6.4 Expected Outcomes

A measurable decrease in water consumption as a result of real-time monitoring and behavioral nudges.

- Increased responsiveness to leakage alerts, leading to prompt action and reduced water wastage.
- Higher user engagement and motivation through gamification and personalized recommendations.
- Long-term behavioral shifts towards water conservation, supported by IoB-driven insights and incentives.

Figure 3: IoT-IoB Integrated Framework for Smart Water Conservation

A Suggested experiment for the industry

This experimental study aims to validate the objective that integrating IoT and IoB into water management systems can lead to significant improvements in water conservation and sustainable usage. The findings will provide empirical evidence to support the adoption of technology-driven behavioral interventions in global water management policies.

7. RESULTS AND DISCUSSION

7.1 Expected Outcomes of the Proposed Framework

The framework proposes technological innovation, resource optimization, and ecological and social considerations to revolutionize water management. This paradigm shift will improve sustainability, efficiency, water conservation, and other areas.

Thus, industry, agriculture, and cities have improved water usage efficiency. Water distribution may be better controlled using predictive analytics and real-time data. This distributes water to needy areas, reducing waste. The methodology emphasizes data-driven decision-making and automation to reduce human error and monitor water consumption patterns. This allows focused activities, which saves water.

A more equitable water distribution is also expected. Traditional techniques cause uneven water distribution, leaving vulnerable people without water. Smart water management will reduce inequality and ensure that all areas—even remote or neglected ones—have adequate water.

The proposed structure should promote sustainability. Water systems with inefficient infrastructure consume resources. This framework may encourage eco-friendly behavior via infrastructure upgrades, reducing carbon footprints, energy use in water pumping and treatment, and leak losses. Additionally, regulating drain and recharge protects water bodies.

7.2 Comparison with Traditional Water Management Methods

Traditional water management advice suggests permanent infrastructure to collect, clean, and distribute water from several sources. Although useful in many cases, these methods are wasteful and unsustainable owing to their inherent restrictions. Issues include outdated infrastructure, insufficient maintenance, and a lack of managerial competence.

The idea demands a distributed, adaptive approach. It collects water supply chain data utilizing real-time sensors, IoT devices, and cloud analytics. Flexible and responsive management may be possible. Due to human monitoring, conventional approaches may delay leak, pollutant, and waste detection. Machine learning and prediction algorithms prevent difficulties from spreading. (Stefano Armenia, 2023)

Older water management methods ignore environmental impacts by concentrating on supply and demand. This complete decision-making framework uses environmental sustainability measures, including ecosystem conservation. Water use coordinated with natural hydrological cycles may help traditional systems prevent environmental overexploitation.

The suggested approach is flexible and adaptable. Since conventional systems are inflexible, improvement may take time. Machine learning and real-time data enable the suggested system to instantly adjust to water demand and supply changes. These aids planning and reaction. It can also withstand climate change, which may overwhelm older systems. (William J. Cosgrove, 2015)

7.3 Discussion on Scalability, Cost-effectiveness, and Sustainability

An advantage of the suggested system is scalability. It belongs in little towns and big cities. Modularity and adaptability enable scaling up or down to suit population demands simple. Larger cities may monitor water consumption using modern water purifying facilities and sophisticated distribution networks, while smaller towns may employ low-cost IoT sensors. The technique is scalable and applicable in numerous regions and socioeconomic conditions.

Further data collection and analysis will enhance the framework's outcome prediction qualities, improving predictions and planning. Scalability, internal learning, and growth will keep the framework current. Even though implementing new technologies like the Internet of Things and cloud services is expensive, the suggested architecture saves money over time. Leak detection, water treatment, and waste reduction may save municipalities money using the framework. Farmers may save money by using less water and increasing crop yields using precision irrigation. (Donatus Ebere Okonta, 2024)

Early problem detection and preventing costly repairs save maintenance costs. Automation of water distribution and reduced pumping and treatment energy may reduce operating expenses.

Environmental friendliness and water efficiency are the framework's long-term aims. To save water for future generations, the framework optimises water utilization and waste reduction. It promotes sustainable water treatment and transportation to reduce fossil fuel use.

Integrating ecosystem health guarantees water management does not harm biodiversity or ecosystem function. Over time, the framework balances human water needs with natural water systems' capacity, promoting ecosystem health. This supports global sustainability and ensures future generations have enough water and a healthy ecosystem. Modern, adaptable, and eco-friendly water control design is offered. Technology may make water resource management more egalitarian, efficient, and sustainable. (Elissaios Sarmas, 2022)

8. CONCLUSION

The suggested water management system makes use of technology to improve productivity, equality, and sustainability, while considerably increasing the efficiency with which resources are used. Through the use of real-time data, predictive analytics, and distributed technologies, the system allows for the reduction of water usage across a variety of industries, while simultaneously encouraging conservation and minimizing waste.

Through the use of Internet of Things (IoT) and machine learning, adaptive water management is made possible, therefore overcoming the constraints of conventional approaches, which often suffer from inflexibility and infrastructure that is out of date. Through the implementation of these improvements, proactive resource management is supported, which in turn makes the framework scalable and adaptable to a variety of contexts.

Additionally, the system enhances cost effectiveness by reducing the expenditures associated with operations and maintenance, which eventually contributes to the environmentally sustainable development of the system over the long run. In addition to this, it promotes the use of renewable energy sources and behaviors that save the environment.

Through the implementation of this strategy, global water management will be transformed, resulting in a water supply that is more fair, efficient, and sustainable in the future. (Maria E. Mondejar, 2021)

Internet of Things and machine learning models enable adaptation. Traditional water management methods risk infrastructure obsolescence and inflexibility. These innovations allow proactive resource usage and waste reduction via application. The framework is suited for numerous events since it adapts to venues of any size or resource.

The framework lowers operating and maintenance expenses via system efficiency and water loss reduction. The framework fosters long-term environmental health via sustainability. This covers renewable energy and ecological conservation.

This technique may alter global water management. It ensures future water supply more fairly, effectively, and sustainably.

REFERENCES

- A. Shaji George, A. S., 2023. The Environmental Impact of AI: A Case Study of Water Consumption by Chat GPT. Zenodo home, 1(2), Pp. 91-104. https://doi.org/https://doi.org/10.5281/zenodo.7855593
- Abebe, A., 2024. Internet of Things (IoT) Enabled Water Distribution System for Smart Water Management. International Journal of Wireless Communications and Mobile Computing, 11(1), Pp. 1-10. https://doi.org/https://doi.org/10.11648/j.wcmc.20241101.11
- Acciona. 2021. SmartWater4Europe. ACCIONA.https://www.acciona.com/projects smartwater 4europe
- Ahmad Ferdowsi, F. P.-F., 2024. Urban water infrastructure: A critical review on climate change impacts and adaptation strategies. Urban Climate, 58. https://doi.org/10.1016/j.uclim.2024.102132
- Ahmed S. Ali, M. N., 2022. A solution for water management and leakage detection problems using IoTs based approach. Internet of Things, 18. https://doi.org/https://doi.org/10.1016/j.iot.2022.100504
- Alshami, A., 2024. IoT Innovations in Sustainable Water and Wastewater Management and Water Quality Monitoring: A Comprehensive Review of Advancements, Implications, and Future Directions. Digital Object Identifier IEEE Access, 12, Pp. 58427-58453. https://doi.org/10.1109/ACCESS.2024.3392573
- Bipasha Singha, O. E. , 2022. Water conservation behavior: Exploring the role of social, psychological, and behavioral determinants. Journal of Environmental Management, 317. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.115484
- Carolina Del-Valle-Soto, J. C.-P.-C.-F.-A., 2024. A Comprehensive Review of Behavior Change Techniques in Wearables and IoT: Implications for

- Health and Well-Being. Sensors (Basel), 24(8). https://doi.org/https://doi.org/10.3390/s24082429
- Clement Carrel clement, M.-L. G.-P., 2023. Factors of effectiveness of green nudges for more eco-responsible behaviour Systematic review and research directions. Recherche et Applications En Marketing (English Edition), 38(3), Pp. 32-76. https://doi.org/https://doi.org/10.1177/20515707231177814
- David Pascoal, N. S., 2024. A technical survey on practical applications and guidelines for IoT sensors in precision agriculture and viticulture. Sci Rep, 14. https://doi.org/https://doi.org/10.1038/s41598-024-80924-y
- Donatus Ebere Okonta, V. V., 2024. Smart cities software applications for sustainna bility and resilience. Heliyon, 10(12). https://doi.org/https://doi.org/10.1016/j.heliyon.2024. e32654
- Elissaios Sarmas, E. S., 2022. ML-based energy management of water pumping systems for the application of peak shaving in small-scale islands. Sustainable Cities and Society, 82. https://doi.org/https://doi.org/10.1016/j.scs.2022.103873
- Evangelos Syrmos, V. S., 2023. An Intelligent Modular Water Monitoring IoT System for Real-Time Quantitative and Qualitative Measurements. Sustainability , 15(3). https://doi.org/https://doi.org/10.3390/su15032127
- Gregg Sparkman, L. H., 2021. How social norms are often a barrier to addressing climate change but can be part of the solution. Behavioural Public Policy, 5(4), Pp. 525-555. https://doi.org/https://doi.org/10.1017/bpp.2020.42
- I. Andrić, A. V., 2022. IoT approach towards smart water usage. Journal of Cleaner Production, 367. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.133065
- IBM Research. 2015, Dec 9. IBM Expands Green Horizons Initiative Globally To Address Pressing Environmental and Pollution Challenges. IBM . https:// uk. newsroom. ibm. Com /2015-Dec-09-IBM-Expands-Green-Horizons-Initiative-Globally-To-Address-Pressing-Environmental-and-Pollution-Challenges
- João Alves Coelho, A. G., 2020. Precise Water Leak Detection Using Machine Learning and Real-Time Sensor Data. IoT, 1(2), Pp. 474-493. https://doi.org/https://doi.org/10.3390/iot1020026
- KaaloT. 2024, Dec 2. Water Leak Detection with IoT-Based Solutions. IoT For All. https://www.iotforall.com/water-leak-detection-with-iot-based-solutions
- Kabaso, N. J., 2024. Building a Smart Water City: IoT Smart Water Technologies, Applications, and Future Directions. Water, 16(4). https://doi.org/ https://doi.org/10.3390/w16040557
- Lakshmi Haritha Medida, G. L., 2025. Understanding the Internet of Behavior: Bridging Data and Human Actions. In Mapping Human Data and Behavior With the Internet of Behavior (IoB), Pp. 21-42. IGI Global.
- Laura García, L. P., 2020. IoT-Based Smart Irrigation Systems: An Overview on the Recent Trends on Sensors and IoT Systems for Irrigation in Precision Agriculture. Sensors, 20(4). https://doi.org/https://doi.org/10.3390/s20041042
- Lo'ai Tawalbeh, F. M., 2020. IoT Privacy and Security: Challenges and Solutions. Applied Sciences , 10(12). https://doi.org/https://doi.org/10.3390/app10124102
- Maria E. Mondejar, R. A., 2021. Digitalization to achieve sustainable development goals: Steps towards a Smart Green Planet. Science of The Total Environment, 794. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.148539
- Michael P. Kelly, M. B., 2016. Why is changing health-related behaviour so difficult? Public Health, 136. https://doi.org/https://doi.org/10.1016/j.puhe.2016.03.030
- Mohd Javaid, A. H., 2021. Internet of Behaviours (IoB) and its role in

customer services. Sensors International, https://doi.org/https://doi.org/10.1016/j.sintl.2021.100122

2.

- Mohd Javaid, A. H., 2022. An extensive study on Internet of Behavior (IoB) enabled Healthcare-Systems: Features, facilitators, and challenges. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2(4).https://doi.org/https://doi.org/10. 1016/j.tbe nch.2023.100085
- Mohd Javaid, A. H., 2022. An extensive study on Internet of Behavior (IoB) enabled Healthcare-Systems: Features, facilitators, and challenges. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2(4). https://doi.org/ https://doi.org/10. 10 16/j.tbench.2023.100085
- OptConnect. 2024, Dec 3. Smart Irrigation: Revolutionizing Water Usage in Urban Landsc apes. IoT For All. https://www.iotforall.com/smart-irrigation-revolutionizing-water usage-in-urban-landscapes
- Public Utilities Board Singapore. 2016. Managing the water distribution network with a Smart Water Grid. Smart Water, 1. https://doi.org/https://doi.org/10.1186/s40713-016-0004-4
- Ranganathan Chandrasekaran, V. K., 2020. Patterns of Use and Key Predictors for the Use of Wearable Health Care Devices by US Adults: Insights from a National Survey. J Med Internet Res, 22(10). https://doi.org/https://doi.org/10.2196/22443
- Sapra, Y., 2023, Dec 29. Smart Water Management Using IoT in 2024. HashStudioz.https://www.hashstudioz.com/blog/smart-water-management-using-iot-in-2024/
- Shams Forruque Ahmed, M. S., 2024. Insights into Internet of Medical Things (IoMT): Data fusion, security issues and potential solutions. Information Fusion, 102. https://doi.org/10.1016/j.inffus.2023.102060
- Stefania Anna Palermo, M. M., 2022. Smart Technologies for Water Resource Management: An Overview. Sensors , 22(16). https://doi.org/https://doi.org/10.3390/s22166225
- Stefano Armenia, F. B., 2023. Identifying policy options and responses to water management issues through System Dynamics and fsQCA.

 Technological Forecasting and Social Change, 194. https://doi.org/https://doi.org/10.1016/j.techfore.2023.122737
- Suan Lee, B. K., 2023. Machine Learning Model for Leak Detection Using Water Pipeline Vibration Sensor. Sensors (Basel), 23(21). https://doi.org/https://doi.org/10.3390/s23 218935
- Taoufik Benhmad, C. B., 2024. Design and Implementation of an Integrated IoT and Artificial Intelligence System for Smart Irrigation Management. Int. J. Advance Soft Compu. Appl, 16(1), Pp. 197-218. https://doi.org/10.15849/IJASCA.240330.12
- Wadekar, S., Vakare, V., Prajapati, R., Yadav, S., and Yadav, V., 2016. Smart water manag ement using IOT. 2016 5th International Conference on Wireless Networks and Emb edded Systems (WECON). Rajpura, India: IEEE Xplore. https://doi.org/https://doi.org/10.1109/WECON.2016.7993425
- Walton, R., 2015, Feb 3. Study: Nest thermostats can reduce residential energy use more than 17%.Utility Dive. https://www.utilitydive.com/news/study-nest-thermostats-can-red uce-residential-energy-use-more-than-17/359718/
- Weng Marc Lim, M. D., 2024. Gamification for sustainable consumption: A state-of-the-art overview and future agenda. Business Strategy and the Environment, 34, Pp. 1510–1549. https://doi.org/https://doi.org/10.1002/bse.4021
- William J. Cosgrove, D. P., 2015. Water management: Current and future challenges and research directions. Water Resources Research, 51, Pp. 4823-4839.https://doi.org/https://doi.org/10.1002/2014WR016869
- ZiervoGeL, L. J., 2019. One City's Response To A Record-Breaking Drought. Creative Com mons licence.

