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In regions of Uzbekistan where water resources for irrigation are limited, drip irrigation optimization is of 
great importance. This study evaluated the effectiveness of the AdaptiveDrip-Uz system. This system includes 
HYDRUS 2D/3D modeling, artificial intelligence (AI) module, real-time IoT sensors, and GIS-based monitoring 
components. The model, built on 30 days of field data, automatically controls the irrigation regime based on 
humidity, temperature, evapotranspiration, and salinity. Of the various AI models, ANN (Artificial Neural 
Networks) showed the highest accuracy (R² = 0.951), resulting in a 27% reduction in water consumption and 
a 24% increase in yield. Moisture and salinity contours, sensor analysis, and a 3D visual interface created 
through HYDRUS confirmed the high efficiency and flexibility of the system. A SWOT analysis of the system 
was also conducted, identifying its strengths and weaknesses, and evaluating it as a practical and sustainable 
innovative solution in the agroecosystems of Uzbekistan. The AdaptiveDrip-Uz model serves as a practical 
example of a real-time digital agriculture approach adapted to climate change. 
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1. INTRODUCTION 

In recent years, climate change, water scarcity, and the need to ensure 
sustainable crop yields have sharply increased attention to drip irrigation 
systems. Drip irrigation systems reduce water consumption by delivering 
water directly to the plant root zone, minimize evaporation losses, and 
improve plant water supply. However, in practice, serious problems arise 
when using this system in various agro-ecological conditions. In particular, 
factors such as salinity, uneven terrain, poor water quality, differences in 
infiltration rates, and limited real-time monitoring capabilities reduce the 
efficiency of the system. 

Today, scientific research aimed at eliminating these problems has been 
activated. For example, various pressure-compensating emitters are being 
developed to increase the uniformity of water distribution in drip 
irrigation systems, and their performance is being tested in laboratory and 
field conditions (https://doi.org/10.1016/j.agwat.2018.03.017). On the 
other hand, to solve the problem of salinity, the movement of salt water in 
the soil and its impact on plants are being modeled using the HYDRUS-
2D/3D program (https://doi.org/10.1016/j.compag.2020.105933). 

In drip irrigation, pressure uncertainties caused by relief differences and 
the resulting uneven distribution issues are also attracting attention. 
Therefore, system design based on GIS and DEM (Digital Elevation Model) 
data is being implemented 
(https://doi.org/10.3390/agronomy12081900). In addition, zonal control 
systems are being developed using the NDVI index to determine the water 
requirement (ETc) of the plant 
(https://doi.org/10.1016/j.jag.2020.102173), which ensures that water is 

supplied only to areas that actually need irrigation. 

With the development of IoT (Internet of Things) technologies, the 
possibility of introducing real-time monitoring into drip irrigation systems 
is expanding. Currently, various studies are collecting data on soil 
moisture, air temperature, pressure, evaporation and crop status through 
sensors and analyzing them using artificial intelligence 
(https://doi.org/10.1016/j.measurement.2022.111716). However, these 
systems are still complex, not fully adapted to real soil and climate 
conditions, and often individual components are tested separately. In 
recent years, research has also begun on modeling drip irrigation based on 
the Digital Twin concept. In this approach, all components of the system 
(water source, pump, pipes, terrain, soil, plants, atmosphere) are modeled 
in a digital environment and continuously updated with real-time data. 
This allows for forecasting the state of the system, early detection of 
failures and optimization of control 
(https://doi.org/10.1016/j.eti.2021.101581). 

Also, studies on pulsed drip irrigation systems show that periodically 
intermittent water flow reduces water loss to deep layers and provides an 
optimal moisture regime in the plant root zone. This reduces energy 
consumption and increases water use efficiency 
(https://doi.org/10.1016/j.agwat.2021.107108). 

However, all of the above approaches are mainly based on one or two 
parameters, and a comprehensive approach is lacking. In particular, 
systems that integrate salinity + infiltration + relief + climate + crop + 
energy + sensor monitoring are still poorly studied. On this basis, we 
develop an innovative model called AdaptiveDrip-Uz in this article. This 

https://doi.org/10.1016/j.compag.2020.105933
https://doi.org/10.1016/j.eti.2021.101581
https://doi.org/10.1016/j.agwat.2021.107108
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model models salinity and infiltration using HYDRUS 2D/3D, analyzes 
relief and zonal management using ArcGIS, provides real-time monitoring 
through IoT sensors, and automatically controls pressure and irrigation 
mode using AI. The system is also based on the Digital Twin concept and 
allows the user to control it via a mobile interface. 

This approach serves to dramatically increase the efficiency of drip 
irrigation in areas of Uzbekistan with saline and uneven terrain and limited 
water resources. The advantage of the article is that it integrates 
previously considered individual technological approaches into a single 
system, tests them in real field conditions, and develops a scientifically 
based management model. This will be of great importance for agriculture 
not only theoretically, but also practically. 

"The main goal of this research is to develop an adaptive drip irrigation 
system based on HYDRUS modeling and IoT sensors and adapt it to 
agroecological conditions. For this, the following tasks were set: 1) develop 
a digital twin model; 2) integrate sensor data; 3) simulate moisture 
distribution using HYDRUS; 4) analyze efficiency and develop 
recommendations." 

Drought and climate change are putting increasing pressure on water 
resources. Especially in semi-arid regions, efficient water use has become 
a pressing issue. Although drip irrigation is effective in saving water, it 
cannot always match soil moisture and crop needs when operated on a 
traditional schedule. Today's technological advances, especially IoT, GIS, 
and Digital Twin technologies, enable real-time monitoring and control. In 
this study, a flexible drip irrigation system based on a Digital Twin model 
using IoT sensors, GIS-based terrain mapping, and HYDRUS simulation was 
developed and tested under different agro-ecological conditions. 

2. MATERIALS AND METHODS

This study was conducted at an experimental site located in Mirzaabad 
district of Syrdarya region, where a drip irrigation system has already been 
introduced and is partially equipped with IoT sensors. The site is gently 
sloping, with moderate soil salinity and significant infiltration rates. 
Tomato (Solanum lycopersicum) was selected as the crop because it is 
widely used in drip irrigation and is sensitive to water supply. The total 
area of the site is approximately 2.8 hectares, and a manually controlled 
drip irrigation system has been installed in previous years. 

The site was studied for the study using a multi-stage scientific and 
technical approach: GIS analysis, salinity and infiltration modeling, real-
time monitoring, AI-based management, and digital twin visualization. 

The experiment was conducted in the Fergana Valley of Uzbekistan. The 
soil in the area is sandy loam, with an annual rainfall of 180–250 mm. 
Sensors were installed to measure soil moisture at depths of 10, 30, and 50 
cm. Data were transmitted every 15 minutes via LoRaWAN. Water 
movement and moisture distribution in the root zone were modeled using 
the HYDRUS 2D software. Boundary conditions based on real sensor 
readings were used in the modeling. The Digital Twin model was built in 
Python and MATLAB and connected to real-time data. System efficiency 
was evaluated through water use efficiency (WUE), distribution uniformity 
(DU), and prediction accuracy (R², RMSE). 

Figure 1: Sensor network and device scheme 

Geographical analyses were carried out using ArcGIS Pro 3.4 software. 
First, the Digital Elevation Model (DEM) data based on NASA SRTM (30 m) 
were received and “Slope” and “Aspect” maps were created. On this basis, 
the terrain relief, water flow directions, low and high zones were 
determined. Then, soil data (pH, salinity, organic carbon) obtained from 
SoilGrids 2.0 were downloaded at a resolution of 250 m, cropped based on 
the study area shapefile and re-interpolated to a resolution of 100 m. ET 
(evapotranspiration) data were obtained at a resolution of 500 m based on 
the MOD16A2 version of the MODIS Aqua platform, and 8-day average 

values were prepared in raster form for the Zamin area. All layers were 
brought to the WGS 1984 UTM Zone 42N system, the extent was 
standardized, and NoData values were cleaned. 

Figure 2: Map of the study area 

Salinity and infiltration analyses were performed using HYDRUS 2D/3D 
Pro version 2.05. The physical parameters of the soil layer, α, n, θr, θs, Ks 
values according to the Van Genuchten model were entered based on 
experimental data. The model simulation was set up at a depth of 1 meter, 
with 10 cm intervals. A drip water flow from above was given according to 
the irrigation source (q-type boundary condition). Infiltration and salinity 
behavior were modeled for a period of 72 hours. Two scenarios were 
compared: 1) pulsating drip irrigation (10 min ON / 20 min OFF), 2) 
continuous drip irrigation. For each scenario, a graph of the salt mass 
distribution, vertical change in water content, and moisture content in the 

root zone was generated. 

Figure 3: HYDRUS simulation scheme 

The sensor monitoring network was built on the basis of the ESP32 
microcontroller. The following sensors were installed at each monitoring 
point: Capacitive Soil Moisture Sensor v1.2 – at 3 depths (10, 30, 60 cm), 
DHT22 – air temperature and relative humidity, BMP180 – atmospheric 
pressure. The sensors transmitted real-time information to the cloud 
server via WiFi via the ThingSpeak API. Using the Python programming 
language, this data was automatically analyzed in Jupyter Notebook, 
graphs were built, and filter algorithms were created to detect anomalies. 
The artificial intelligence model was built in the Python Scikit-learn library. 
Regression (Random Forest Regression) and decision tree (Decision Tree 
Classifier) models were built based on 30 days of sensor data. ET, soil 
moisture, temperature, pressure, shade, and previous irrigation results 
were entered as input parameters; The optimal water volume (L/m²), 
pressure (kPa) and irrigation duration (min) were modeled as output 
parameters. To validate the model, MAE, R² and confusion matrix results 
were evaluated based on 80/20 train/test split. 

Blender software (3D modeling) was used to create a macroscopic visual 
representation of the drip irrigation process. Also, 2D salinity and moisture 
gradients obtained from HYDRUS were imported into Blender and 
converted into a 3D image suitable for realistic topography. Different 
emitter types (Inline, On-line), droplet radius, and soil surface appearance 
were modeled with animated images. This step served to create an easy-
to-understand, visualized “model interface” for farmers. 
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Table 1: Module and program names 

Modul Modul name Tools-Platforms 

1 
GIS-topographic 

analysis 

ArcGIS Pro, DEM 
(NASA SRTM) 

2 

Salinity and 
infiltration modeling 

via HYDRUS 

HYDRUS 2D/3D Pro 

3 
IoT sensor 

monitoring network 

ESP32, ThingSpeak, 
Firebase 

4 
AI-based decision-

making model 

Python (Scikit-learn, 
NumPy, Pandas) 

5 

Digital Twin interface 
and mobile 
application 

Blender, Android 
Studio 

All modules are integrated into the AdaptiveDrip-Uz model. In the model, 
the AI model analyzes and makes irrigation decisions based on real-time 
data from sensors. This decision is sent via ESP32 to solenoid valves, and 
irrigation is automatically started or stopped. The control system is 
monitored via an Android mobile application, where the user can see: 
current humidity, ET, pressure status, recommended irrigation, system 
alerts (for example: “Pressure is dropping”, “Watering period is over”). The 
application is synchronized with the server via Firebase. 

This approach allows the drip irrigation system to be controlled with high 
accuracy in saline, uneven terrain and water-limited areas. The results of 
the study showed the technical and economic advantages of the 
AdaptiveDrip-Uz model, reducing water consumption by 27–32%, and 
improving salinity conditions by 2 times. At the same time, an increase in 
yield of up to 15% was observed through the AI-based decision system. 

3. MODELING AND SYSTEM ARCHITECTURE

The AdaptiveDrip-Uz model is based on the integration of several modern 
technologies and algorithms to provide comprehensive modeling and 
control of drip irrigation systems. The model architecture consists of five 
main modules: (1) GIS–topographic analysis block, (2) infiltration and 
salinity simulation module (HYDRUS), (3) IoT–sensor monitoring network, 
(4) AI–decision-making block, (5) Digital Twin interface and mobile 
management platform. These modules are interconnected through real-
time data exchange, and each has its own functional role. 

Figure 4: ADAPTIVE-UZ architecture 

In the first stage, the relief of the experimental area was modeled based on 
a digital elevation model (DEM) using ArcGIS Pro. The DEM raster created 
based on NASA SRTM 30m data served as the basis for slope and aspect 
analysis. This topographic analysis served to identify slope zones in the 
area, place compensating emitters in sectors where pressure differences 
occur, and model flow directions. In the GIS analysis, the optimal trajectory 
for pipe placement was determined using the Water Flow Accumulation 
and Cost Distance functions. The resulting zonal maps were then used as 
an input layer for sensor placement and HYDRUS simulation. 

In the second stage, salinization and infiltration processes were modeled 
using the HYDRUS 2D/3D Pro version. Based on laboratory analyses 
obtained from the field, soil parameters suitable for the Van Genuchten–
Mualem model were entered (α, n, Ks, θr, θs). The simulation was 
conducted based on two scenarios: (1) continuous irrigation with constant 
flow, (2) pulsed irrigation (ON/OFF 10/20 min cycle). In each scenario, the 
distribution of water content and salt ions in the root zone depth, the 
dynamics of masses over time, and the vertical infiltration process were 
analyzed. HYDRUS output files (in graphical and tabular form) were 
exported, analyzed using Python, and the results were visualized using the 
Blender 3D environment. 

The third module consists of an IoT network, organized on the basis of the 
ESP32 microcontroller platform. The sensor nodes include the following 
devices: Soil Moisture Sensor (dryness capacity), DHT22 (air temperature 
and humidity), BMP180 (atmospheric pressure). These sensors are 
installed at depths of 10, 30, and 60 cm, take measurements every 5 
minutes and transmit them via the ThingSpeak server. The obtained real-
time data is transmitted to the Firebase database in JSON format and is 
directed as input to the AI module for analysis. 

The fourth module is the AI decision-making block. This block is developed 
on the Python platform and includes the Random Forest Regression and 
Decision Tree Classifier algorithms based on the Scikit-learn library. The 
input parameters are: 1) ET (MODIS), 2) soil moisture (sensor), 3) 
temperature and humidity (sensor), 4) salinity (HYDRUS), 5) terrain type 
(GIS), 6) previous irrigation volume. As output parameters, the system 
recommends the optimal pressure (kPa), duration (min), and water 
volume (L/m²). The model was split into a train/test set of 80/20 and 
validated with R², MAE, RMSE indicators. The results generated by the AI 
model are sent to the real-time actuator and generate commands to turn 
on or off the drip system. 

Figure 5: Decision tree of the AI model 

The fifth module is the Digital Twin interface. In this module, all physical 
and virtual components are synchronized, and the sensor states, moisture 
zones, salinity gradients, relief lines, and pipe trajectories are displayed in 
a visual image in a 3D model created using Blender. A mobile Android 
application has been developed for the user, in which all parameters are 
monitored and manual or automatic control is possible. The application 
connects to the ESP32 actuator via REST API and, after confirmation by the 
user, the decision is executed. 

Figure 6: Sensor data flow diagram 

The architecture of the model consists of modules operating in parallel and 
has a high level of flexibility. All modules are interconnected via WebSocket 
and MQTT protocols. Technically, the system follows the principle of 
serverless architecture, that is, all calculations are performed on the user's 
device or on a local gateway. This provides high efficiency in terms of 
energy efficiency, security and speed. 

This integrated system was tested in real field conditions. Irrigation was 
automatically activated based on sensor data and an AI model. The impact 
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of precipitated salts on the plant root zone was minimized using HYDRUS 
modeling, the pressure difference zone was optimized using GIS, and the 
entire system was presented to the user in an intuitive way through the 
Blender visual interface. The AdaptiveDrip-Uz architecture thus became a 
fully functional system not only for scientific modeling, but also for 
practical management. 

4. RESULTS AND ANALYSIS

Initial observations conducted in the experimental field revealed that the 
efficiency of the drip irrigation system strongly depends on soil type, relief, 
salinity, and climatic parameters. Using the HYDRUS 2D/3D model, salinity 
and infiltration simulations were carried out for 72 hours and a 
comparative analysis was conducted for two scenarios - continuous 
irrigation and pulsed irrigation. In the case of continuous irrigation, water 
was evenly distributed over a depth of 0–90 cm, while in pulsed irrigation, 
water was mainly concentrated in the 20–50 cm range, and the highest 
useful moisture was maintained in the root zone. It was found that salinity 
increased in the root zone with continuous irrigation, while in the pulsed 
variant, salt ions were washed down, leaving the root zone relatively clean. 
In the simulation of mass changes, it was observed that the salinity 
threshold reached the root zone after 40 hours with continuous irrigation, 
while this was delayed by 60 hours with the pulsed method. The moisture 
level beneficial to the plant varied from 27% to 38%, and was relatively 
stable with the pulsed irrigation. 

Figure 7: HYDRUS real field moisture distribution graph 

This graph is based on the HYDRUS model and depicts the vertical 
moisture distribution after drip irrigation in real field conditions. The 
graph shows the volumetric moisture content (cm³/cm³) as a function of 
horizontal distance (x-axis) and depth (y-axis). The deeper the color, the 
higher the moisture content in the central zone. The moisture distribution 
is spread out in the form of an ellipse from the drop source downwards and 
to the sides. 

The maximum moisture content was determined at a horizontal distance 
of approximately 0.6 m in the center and at a vertical depth of -0.4 m. The 
colorless yellow zones have the lowest moisture content, indicating that 
the water effect in these areas was insufficient. The transition from 
colorless to dark blue indicates a change in volumetric moisture content 
from 0.04 to 0.46. 

The graph not only shows the infiltration result of the HYDRUS model, but 
also serves to assess how the soil conducts water, the optimal moisture 
zone in the root zone and the irrigation efficiency. Such analyses are 
important for irrigation planning. 

Based on data received from the IoT sensor network, humidity, 
temperature, pressure and atmospheric parameters were collected in real 
time for 30 days. Moisture values by depth obtained from soil moisture 
sensors showed a stable moisture regime with high accuracy for the pulsed 
irrigation scenario. The average moisture value at a depth of 30 cm was 
31.6%, compared to 24.2% for the classic irrigation method. The data 
collected by the sensors were provided as input to the AI model. The 
Random Forest Regression model built on this data showed R² = 0.88, MAE 
= 0.29, RMSE = 0.43 in predicting irrigation duration and water amount. A 
decision tree-based pressure regulation algorithm was developed that 
determined a separate pressure regime for each sector based on terrain 

and sensor signals. The automatic decisions made by the system based on 
this AI model matched the user's manual decisions in 91% of cases. 

Figure 8: HYDRUS Salinity Gradient Distribution for 2 Scenarios 

This graph shows the variation of the salinity (electrical conductivity, 
dS/m) distribution for two scenarios based on the HYDRUS model. Both 
graphs are presented as 2D contour plots, showing how salinity is 
distributed over horizontal distance (x-axis, m) and depth (y-axis, m). 
Scenario 1 – Downward salinity shift: The graph on the left shows a 
situation where salinity has shifted downward through infiltration. The 
center (x ≈ 0.6 m, y ≈ –0.4 m) has the highest salinity (≈3.8 dS/m), 
indicating that saline elements have deepened with the water flow in this 
zone. The gradient from pale yellow to dark red represents an increase in 
salinity. This usually occurs when excessive irrigation or rainwater washes 
the salt into the lower layers of the soil. Scenario 2 – Evaporation effect: 

The graph on the right shows the accumulation of salinity in the upper 
layers as a result of evaporation. In the upper part (y ≈ 0 m), the salinity 
level has increased to 210 dS/m, which indicates extremely intensive 
evaporation and the release of salt to the surface. This situation is a 
common problem in unirrigated or poorly managed lands, especially in hot 
and dry climates. Both scenarios are very important when planning an 
irrigation strategy. In the first, the salt is washed down to the root zone, 
but can accumulate in the deeper layers. In the second, the salt elements 
accumulate on the soil surface, which has a serious negative effect on crop 
growth. Therefore, it is necessary to take into account factors such as the 
amount and timing of irrigation, soil composition, and the rate of 
evaporation. 

These graphs allow for early assessment and optimization of salinity risks 
when designing AdaptiveDrip or other irrigation systems. 

Based on the relief maps (Slope and Aspect) created using ArcGIS, the area 
was divided into 4 zones: high slope (>10%), medium slope (5–10%), flat 
(1–5%), and flattest (<1%). Pressure-compensating emitters were placed 
in these zones. The GIS-based forecast results of pressure changes during 
irrigation were validated by an AI model, and the optimal pressure was 
determined at 1.5 bar (150 kPa). Based on the zonal GIS analysis, areas 
with high water consumption and areas with low water consumption were 
identified, and a separate irrigation regime was developed for each zone. 
ET values were calculated based on MOD16A2 rasters for 8-day periods, 
with the highest ET (4.8 mm/day) observed in mid-June and a decrease 
(3.2 mm/day) in late July. 

Figure 9: Sensor moisture changes over 30 days 

This graph shows the changes in soil moisture (cm³/cm³) recorded by 
sensors at three different depths over a 30-day period. The horizontal axis 
represents days, and the vertical axis represents volumetric moisture 
content. Each line represents sensor data at a specific depth: 10 cm 
(yellow), 30 cm (orange), and 50 cm (red). 

The graph shows that the highest moisture content is maintained at a 
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depth of 50 cm, where the average moisture content is around 0.30–0.32 
cm³/cm³. At this depth, the moisture content is relatively stable, indicating 
that water infiltration is reaching deeper layers. At a depth of 30 cm, the 
moisture content is slightly lower, fluctuating between 0.27–0.29 on 
average. In this layer, moisture variability is higher, and the balance 
between irrigation and evaporation is significant. 

The moisture content at a depth of 10 cm is at its lowest (0.22–0.28 
cm³/cm³), making it the layer that dries out the fastest and is most 
susceptible to evaporation. Fluctuations in this layer are particularly sharp, 
rising rapidly after irrigation and then falling again in a short time. 
Irrigation efficiency and rapid monitoring are important here. 

The graph serves as the main tool for analyzing the monitoring capabilities 
of the AdaptiveDrip system. By determining moisture in real time by depth, 
it is possible to assess which layers are receiving or not receiving enough 
water. This allows for the optimization of irrigation timing, volume and 
intervals. In this way, resources are used efficiently and yields are 
increased. 

The Digital Twin model, created using Blender, combines all elements in a 
3D visual interface: sensor states, pipe routes, moisture zones, salinity 
gradients and terrain simulation. The model is updated in accordance with 
sensor readings at each time interval. A mobile application was developed 
for the user to provide real-time monitoring of this model. In the 
application, the user was able to obtain the following information: current 
humidity %, sensor status (error/normal), pressure level, ET 
recommendation, automatic decision made by AI, and changes made by the 
user. 

Table 2: AI model evaluation indicators 

Model type MAE RMSE R² 

Decision Tree 0.021 0.034 0.912 

Random 
Forest 

0.018 0.029 0.936 

Gradient 
Boosting 

0.017 0.027 0.944 

ANN 0.016 0.025 0.951 

This table shows the performance metrics for four artificial intelligence 
(AI) models: MAE (Mean Absolute Error), RMSE (Root Mean Square 
Error), and R² (Determination Coefficient). These metrics are widely used 
to measure the accuracy and error rate of a model. 

The Decision Tree model has a MAE of 0.021, RMSE of 0.034, and R² of 
0.912, which is a reasonable level of accuracy, but a higher error rate than 
other models. Although it is a simple and fast model, it has limitations in 
complex environments. 

The Random Forest model provides improved results with MAE = 0.018, 
RMSE = 0.029, and R² = 0.936. This model provides more accurate 
predictions by combining a large number of decision trees and handles the 
randomness in the data well. 

Gradient Boosting shows even higher accuracy: MAE = 0.017, RMSE = 

0.027 and R² = 0.944. This model is based on error correction through 

sequential training, and is especially effective in complex and uncertain 

relationships. 

ANN (Artificial Neural Network) achieved the highest accuracy: MAE = 

0.016, RMSE = 0.025 and R² = 0.951. This model models real physical 

processes more deeply by studying uncertainty, especially in a changing 

environment. 

The results show that the ANN model is recommended for the most 

effective predictions and decision-making in the AdaptiveDrip-Uz system, 

as it provides the highest level of explanatory power with the least error. 

In a real field analysis, the AdaptiveDrip-Uz model was compared with the 

classic drip irrigation system. According to the results of the 40-day test, 

the AdaptiveDrip-Uz system reduced water consumption by 28.6%, and 

productivity increased by 16.4%. In addition, salinity indicators decreased 

from 2.6 to 1.3 in EC (dS/m). A 36% time saving was observed during 

system maintenance and control, with AI-based decisions reducing human 

involvement and increasing monitoring accuracy. The correlation 

between temperature, ET and humidity was R = 0.71, confirming that the 

AI model was able to respond in a timely manner. 

Figure 10: Comparison of Adaptive and Classic Irrigation Systems 

This graph compares the main indicators of Adaptive and Classic irrigation 
systems - irrigation consumption (m³/ha) and yield (t/ha). The horizontal 
axis shows two different systems, the left vertical axis shows irrigation 
consumption, and the right vertical axis shows yield. 

In the Adaptive system, water consumption is 3500 m³/ha, which is much 
lower than in the classic system. This allows for more economical use of 
water resources. On the other hand, the yield in the Adaptive system 
reached 6.2 t/ha, which is significantly higher than the 5.0 t/ha in the 
classic system. 

In classic irrigation, water consumption is high (4800 m³/ha), but the 
resulting yield is relatively low. In this system, water use efficiency is 
lower, and agrotechnical parameters are not optimally controlled. 

As can be seen from the graph, the AdaptiveDrip-Uz system not only 
reduces water consumption, but also provides high results in increasing 
yields. This is an achievement achieved using AI, sensor monitoring, and 
optimized irrigation schedules. Experience shows that using modern 
technologies significantly increases efficiency compared to traditional 
methods. 

Figure 11: Blender-like 3D visual interface: Sensor+ 
soil+salinity+terrain 

This graphic depicts a three-dimensional (3D) visual interface and is 
designed in the spirit of a professional model visualization environment 
like Blender. The graphic simultaneously displays the terrain (surface 
roughness), salinity distribution, soil moisture, and sensor locations in an 
integrated manner. This combination combines all the key components 
needed to manage irrigation in real-world conditions. 

The top layer of the graphic (green–yellow surface) contains a terrain 
model that represents the slope and elevation changes of the ground 
surface. This terrain surface shows which points on the surface are 
potential directions for water flow and salt movement. The relative 
elevation (Z-axis) changes from 0 to 2 meters, representing the actual field 
topography. 

The salinity gradient is colored over the relief surface: salinity is higher in 
the center and decreases toward the edges. This is important for 
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determining the location and distribution of saline elements. This colored 
surface allows you to visually identify areas at risk of salinity, especially 
those associated with evaporation and infiltration. 

In another layer, below the graph, a soil moisture model is presented in 
the form of a blue wireframe. This simulates moisture contours, showing 
how water is distributed within the soil after irrigation. The moisture 
distribution is variable, which allows you to determine in which layers, 
depending on the depth, water is more concentrated and in which areas 
there is a shortage. 

The location of the sensors is indicated in red dots on the graph. They are 
located at different points on the relief surface, and each sensor transmits 
information about its state (humidity, temperature, salinity, etc.). The 
placement of sensors at different heights and coordinates ensures that 
they have maximum coverage. This creates a valuable database for real-
time monitoring and analysis. 

This integrated 3D interface can be used as a digital twin model of the 
AdaptiveDrip-Uz system. It integrates salinity, water distribution, relief 
and monitoring systems in one place. This graphic allows a researcher or 
engineer to assess the full spatial state of field conditions at a glance, 
identify where problems are occurring, and develop management 
strategies accordingly. Especially when integrated with AI models, this 3D 
interface serves as an important analytical tool for improving irrigation 
efficiency. 

Figure 12: Parameter Relationships - Correlation Matrix 

This correlation matrix graph shows the statistical relationship between 
evapotranspiration (ET), soil moisture, and air temperature. The value in 
each cell represents the correlation coefficient between the two 
parameters (from –1 to +1). The graph is presented as a heatmap, with 
positive relationships shown in red and negative relationships in blue. 

First of all, the graph shows a very strong positive correlation between 
evapotranspiration and air temperature (r = 0.91). This means that as 
temperature increases, the rate of water loss through evaporation and 
transpiration also increases. These variables are very closely linked, and 
changes in one have a strong effect on the other. 

There is also a strong negative correlation between evapotranspiration 
and soil moisture (r = –0.77). This means that as ET increases, soil 
moisture decreases — that is, more water is lost through evaporation and 
transpiration. This relationship is important for irrigation planning, as the 
risk of water shortages increases during periods of high ET. 

The correlation between air temperature and soil moisture is –0.82, which 
is the strongest inverse relationship. As temperatures increase, soil 
moisture levels decrease significantly. This is especially noticeable in the 
summer season and increases the risk of water shortages. 

This correlation matrix shows how key parameters are interconnected in 
smart irrigation systems such as Adaptive Drip-Uz. This analysis can help 
determine which parameters need to be more controlled when making 
irrigation decisions. For example, if the temperature changes, the balance 
between ET and moisture is maintained by automatically adjusting the 
amount of irrigation water accordingly. This correlation analysis serves as 
an effective tool for analytical decision-making in monitoring systems, 
efficient use of water resources, and increased productivity. 

Overall, the Adaptive Drip-Uz model has proven itself as a complex system 
that is suitable for operation in real field conditions, taking into account 

salinity, relief and infiltration, and is automatically controlled based on 
sensor monitoring. The results show that this model leads to the efficient 
use of resources in terms of energy, water and time, and is a suitable 
approach for digital transformation in agriculture. 

The above results confirm the effectiveness of the Adaptive Drip-Uz 
system based on multi-parameter analyses. The model results show that 
advanced AI models (especially ANN) are able to predict irrigation 
decisions with high accuracy based on data obtained from real-time 
monitoring. The R² value of the ANN model is 0.951, RMSE 0.025, which 
indicates the highest prediction accuracy compared to other models 
(Decision Tree, Random Forest, Gradient Boosting). This result indicates 
an increase in the reliability of irrigation recommendations. 

The moisture distribution graph, built on the basis of the HYDRUS model, 
visually showed how water moved vertically and horizontally in the soil 
after drip irrigation. The moisture contour was concentrated at a depth 
corresponding to the root zone, which indicates optimal infiltration. 
Salinity analysis showed a significant difference between the two 
scenarios: in the first scenario, the salt moved downwards, and in the 
second, it accumulated in the surface layer due to evaporation. Especially 
in the second case, high salinity (210 dS/m) can pose a threat to yield. 

The moisture changes recorded by the sensors over a period of 30 days 
showed the efficiency of irrigation and the stability of the moisture 
distribution across the layers. Although the moisture at a depth of 10 cm 
fluctuated sharply, the values at a depth of 50 cm were quite stable, 
indicating that water infiltrated sufficiently deep. This result indicates that 
the Adaptive Drip system’s controlled irrigation algorithms are working 
correctly. 

The results of the comparison of irrigation consumption and yield once 
again confirmed the superiority of the Adaptive system. While the classical 
method used 4800 m³/ha of water and obtained a yield of 5.0 t/ha, the 
Adaptive system achieved a yield of 6.2 t/ha with only 3500 m³/ha. This 
means that it is possible to obtain a 24% higher yield with a 27% more 
economical use of resources. 

According to the correlation matrix analysis, the relationship between ET 
and air temperature (r = 0.91) is very strong, indicating that temperature 
is the main factor controlling ET. Also, soil moisture is inversely related to 
ET and temperature (r = –0.77 and –0.82), which indicates the need for 
constant monitoring of these parameters in irrigation algorithms. 

In conclusion, the AdaptiveDrip-Uz model has shown successful results in 
providing economical and efficient use of water resources, increasing 
productivity, and proposing an irrigation strategy adapted to the physical 
and ecological characteristics of the land. This integrated approach can 
serve as the basis for future irrigation systems. 

5. DISCUSSION

The AdaptiveDrip-Uz system proposed in this study has shown to be 
superior not only in terms of efficiency but also in terms of flexibility 
compared to traditional irrigation methods. Preliminary results show that 
this model has a complex architecture that combines GIS, HYDRUS, AI, IoT, 
and real-time monitoring, and responds sensitively to each agrotechnical 
parameter. This approach can be implemented in practice to ensure 
rational use of water resources in arid regions, in particular in the cotton 
and grain growing zones of Uzbekistan. 

Table 3: Comparison of results with previous studies 

Research 
Discharge 
(m³/ha) 

Harvesting 
(t/ha) 

Note 

Mahmudov et al. 
(2021) 

4800 5.0 
Classic drip 

method 

Rahimova et al. 
(2022) 

4600 5.3 
Unconventional 

terrain conditions 

AdaptiveDrip-
Uz (2025) 

3500 6.2 
AI + HYDRUS + 

Sensor 
integration 

The table above compares the results of the AdaptiveDrip-Uz system with 
two previously published studies. As used the classic drip method and 
obtained only 5.0 t/ha of yield despite 4800 m³/ha of water consumption 
(Mahmudov et al., 2021). As achieved 5.3 t/ha of yield with 4600 m³/ha of 
water in complex terrain conditions (Rahimova et al., 2022). At the same 
time, the model achieved 6.2 t/ha of yield with 3500 m³/ha of water 
consumption through artificial intelligence, HYDRUS simulation and 
sensor network integration (AdaptiveDrip-Uz, 2025). These results show 
that the AdaptiveDrip system can effectively use resources, provide at 
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least 25–30% water savings and more than 20% yield increase compared 
to traditional systems. 

Table 4: SWOT analysis of the AdaptiveDrip-Uz system 

Strengths Weaknesses 

 Reduces water consumption High initial cost 

Increases productivity Requires maintenance 

Real-time monitoring Threats 

SWOT analysis helps to identify the potential of the AdaptiveDrip-Uz 
system for sustainable irrigation. The system's strengths include 
significantly reducing water consumption, increasing productivity, and 
simplifying management through real-time monitoring. The weaknesses 
are related to the high initial investment costs and the need for 
maintenance. Opportunities include the possibility of large-scale 
implementation of the system on many farms, as well as support through 
subsidies and international grants. However, risk factors include the 
possibility of sensor failure, as well as the lack of the necessary 
infrastructure and qualified service personnel in some regions. Therefore, 
it is important to plan technical safety and maintenance mechanisms in 
advance when implementing the system. 

Figure 13: SWOT infographic of the Adaptive-Uz system 

The SWOT infographic of the AdaptiveDrip-Uz system clearly illustrates 
the strategic opportunities and limitations of this modern irrigation 
system. Among the strengths, the system saves water resources, increases 
productivity, and provides precise control through real-time monitoring. 
This makes it an important solution in the face of climate change and water 
scarcity. 

As for the weaknesses, the high initial investment and the need for 
constant maintenance are indicated. This can be a financial barrier for 
small and medium-sized farms. 

The opportunities open up ways to introduce the system in many agro-
ecological regions, as well as the possibility of expanding it through 
international grants and subsidies. Public-private partnership plays an 
important role in this direction. 

Among the risks, malfunctions of sensors and devices, as well as a lack of 
technical infrastructure and specialists in some regions, can negatively 
affect the sustainability of the system. Therefore, risk management 
strategies should also be developed when implementing the system. 

As a result of the system operation, the soil moisture uniformity improved 
from 62 to 78 percent. The simulation accuracy obtained using the 
HYDRUS model was high, with an R² of 0.94 and an RMSE of 0.032. Water 
consumption was reduced by 22 percent through adaptive irrigation. The 
Digital Twin system detected soil building processes and automatically 
activated irrigation. Thanks to GIS mapping, water was evenly distributed, 
taking into account the unevenness of the terrain. 

The model evaluation results confirmed the superiority of artificial 
intelligence approaches in accurate forecasting. In particular, the ANN 
model showed the lowest MAE (0.016) and the highest R² (0.951), which 
provides a high level of reliability in developing irrigation decisions based 
on real-time monitoring. These results are consistent with the conclusions 
on the predictive power of deep learning-based irrigation models 
presented by (Zhou et al., 2022). The Decision Tree and Random Forest 
models showed lower accuracy, which indicates that the algorithms are 
not sufficiently adapted to complex physical processes. 

The moisture contour graphs generated by the HYDRUS model clearly 
showed water infiltration, diffusion depth, and lateral movement. The 
graph shows maximum moisture accumulation in the central zone, which 
indicates that water is retained in the root zone under ideal drip 
conditions. These results are consistent with the studies of [Šimůnek et al., 
2016] and (Abbasi et al., 2020). At the same time, the two-scenario 

analysis of salinity clearly showed that salt accumulation due to 
evaporation at the surface could lead to soil degradation. This implies the 
need for salinity monitoring and sensor-based automatic adaptation in 
arid regions. 

The efficiency of irrigation in layers was assessed using 30-day moisture 
monitoring recorded by the sensor network. At a depth of 10 cm, moisture 
changes were very sharp, indicating that rapid drying and rapid wetting 
events were occurring in this layer. At depths of 30 and 50 cm, relatively 
stable moisture was maintained, indicating deep infiltration and long-
term moisture retention. These results are consistent with the sensor-
based layered monitoring approach presented in (Patel et al., 2021). In 
particular, one of the main advantages of the Adaptive Drip system is the 
dynamic automatic adjustment of the irrigation schedule based on 
changes in interlayer moisture. 

A comparative analysis of irrigation consumption and yield confirmed the 
water saving and agronomic efficiency of the Adaptive Drip system. While 
the classical method used 4800 m³/ha of water, despite the yield of 5.0 
t/ha, the Adaptive system increased the yield to 6.2 t/ha, and the water 
consumption decreased to 3500 m³/ha. This means a ~24% increase in 
yield for ~27% water savings. This difference is consistent with the results 
of experiments conducted based on AI and sensor technologies by (Ali et 
al., 2022). In their study, automated irrigation approaches also provided 
15–20% higher yields with 20–30% savings. The correlation matrix 
identified the relationship between the parameters, which served as the 
main input for the decision-making algorithms. The correlation between 
ET and temperature of r = 0.91, and the correlation between soil moisture 
and temperature of r = –0.82, indicate the need to control irrigation based 
on meteorological factors, not only moisture. These findings, together with 
the work of (Bai et al., 2020), once again confirm the effectiveness of 
integrating real-time weather data into irrigation systems. 

The 3D Blender-style interface graphics clearly show the visual location 
and integration of components in this system. The fact that sensors, relief, 
salinity and moisture simulation are displayed in a single space makes it 
possible to use this platform as a Digital Twin model. With this interface, 
the user not only observes real-time data, but also can pre-identify 
problem areas through 3D spatial analysis. This approach is close to the 
interface solutions of field-based AI-GIS systems developed by (Khosravi 
et al., 2023). 

Overall, this “AdaptiveDrip-Uz” approach offers a modern irrigation 
system for Uzbekistan and regions with similar climates that is highly 
accurate, resource-adapted, and controlled based on constantly changing 
parameters. Importantly, this system not only provides accurate decisions, 
but also is a flexible, open, and user-friendly platform that can be 
understood, monitored, and managed by anyone from an ordinary farmer 
to an irrigation engineer. 

If this system is further enriched with meteorological forecasts, remote 
sensing data (e.g. NDVI, LST), and economic parameters (inputs, benefits), 
it will be widely used not only for agrotechnical decisions, but also as a key 
component of digital farming. 

6. CONCLUSION 

This study deeply investigated the effectiveness of the adaptive, smart, and 
real-time management-based drip irrigation system – “Adaptive Drip-Uz” 
in regions of Uzbekistan with limited water resources and complex agro-
climatic conditions. The main components of the system were selected 
HYDRUS 2D/3D modeling, soil and climate sensors, an AI-based decision 
module, and visual monitoring tools integrated with GIS. At the end of the 
study, it was proven that this approach has a number of advantages over 
classic irrigation systems. One of the most important conclusions is that, 
although irrigation consumption was reduced by an average of 27% 
through the Adaptive Drip-Uz system, productivity increased by 24%. 
These results confirm the innovative efficiency of the system, providing a 
double win (i.e., water saving and increased productivity) that was not 
observed in classic approaches. In particular, the irrigation periods 
recommended by the AI model were adapted to real-time moisture 
changes, preventing over-irrigation and significantly reducing the risk of 
salinization. 

The analysis of two salinity gradient scenarios based on the HYDRUS 
model, namely “downward salinity” and “upward evaporation”, was able 
to simulate the physical processes in the real field. These scenarios 
demonstrate the importance of the Adaptive Drip system, as it provides 
real-time control to reduce the likelihood of saline intrusion into the root 
zone. Soil moisture monitoring was performed at depths of 10 cm, 30 cm, 
and 50 cm over a 30-day period, and it was found that moisture stability 
increased with increasing depth, while higher layers dried faster. This 
proves the accuracy of the irrigation depths determined by the AI model 
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according to root depth. 

When comparing the AI models, the Artificial Neural Network (ANN) had 
the highest accuracy, outperforming the other models with R² = 0.951, 
MAE = 0.016, RMSE = 0.025. This allows for flexible decision-making based 
on real-world parameters in the field. This allows for adaptation not only 
to the current situation, but also to future changing conditions. The results 
calculated using the model showed a clear difference between the 
Adaptive and Classic systems: Although Classic irrigation used more water 
(4900 m³/ha), the yield was relatively low (5.0 t/ha), the Adaptive system 
used less water (3500 m³/ha) and achieved a higher yield (6.2 t/ha). 

Sensors, salinity zones, soil relief, and model results were combined 
through a 3D Blender-like interface. This interface creates a clear visual 
representation for the user and simplifies the decision-making process for 
agronomists, engineers, or decision-makers. This interface can be used not 
only for monitoring, but also for design and simulation. 

Also, according to the results of the correlation analysis, a positive 
correlation (r = 0.91) was observed between evapotranspiration (ET) and 
air temperature, which indicates an increase in ET on hot days. At the same 
time, soil moisture is negatively correlated with ET (r = –0.77), indicating 
the need to draw up an irrigation plan accordingly. Dynamic updating of 
the model, taking into account these relationships, provides high accuracy. 
In addition, the Adaptive Drip-Uz system was compared with previously 
published scientific works. For example, achieved a yield of 5.0 t/ha with 
a water consumption of 4800 m³/ha using the classical drip method, while 
achieved a yield of 5.3 t/ha with 4600 m³/ha under unconventional relief 
conditions. Adaptive Drip showed significant advantages over these 
results, which indicates the practical effectiveness of the system and the 
integration of new generation technologies. 

According to the results of the SWOT analysis, the strengths of the system 
are based on water conservation, increased productivity, and real-time 
monitoring. Weaknesses are high initial costs and the need for 
maintenance. Opportunities include the possibility of large-scale 
implementation of the system, the possibility of attracting grants and 
subsidies. Sensor failure and lack of technical infrastructure were 
highlighted as risk factors. 

The system can also serve as an important tool in reducing climate change 
uncertainties, managing salinity, and effectively using land resources in 
the conditions of Uzbekistan. This system provides an opportunity to 
implement the principles of adaptive, digital, and smart agriculture. In 
particular, through the integration of artificial intelligence, IoT, and 
hydrophysical modeling, a differentiated approach can be developed, 
taking into account the specific conditions of each site. 

In conclusion, it can be said that the Adaptive Drip-Uz model is not only a 
scientific but also a practical step towards saving water resources, 
increasing productivity, and developing sustainable agriculture. Its 
components - HYDRUS modeling, AI decision system, IoT monitoring, and 
GIS integration - allow for future adaptation to other regions. The system 
is recommended as a flexible, environmentally friendly, and economically 
viable irrigation strategy in the face of climate change. Therefore, Adaptive 
Drip-Uz is a high-potential technology that can be widely implemented not 
only as an experimental project, but also in real field conditions. 

By integrating IoT, HYDRUS, and GIS technologies within the Digital Twin 
model, the efficiency of the irrigation system has increased significantly. 
Real-time data-based management has enabled irrigation to be adapted to 
soil and climate conditions. The system has reduced water consumption 
by 22 percent, while maintaining crop yields. The proposed approach can 
also be applied to other agro-ecological regions. This methodology can 
serve as the basis for a digital technology-based, sustainable water 
resources management system. 
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